Come si fanno le curve in moto – Parte 2

Dai un’occhiata ai nostri Corsi di Guida Sicura, ai nostri Tour in Moto e ai nostri Tour in Miata!

Premessa

Questo articolo è il seguito della Parte 1 – Sterzata e spostamento laterale del corpo, dove sono descritti i modi per far curvare la moto. Qui invece vedremo che cosa succede alle traiettorie quando si accelera e si frena in curva.

Anche questa parte parte inizia con un capitolo in cui sono trattate le nozioni di dinamica della moto necessarie per comprendere i comportamenti descritti nel seguito.

 

Variazioni di velocità in curva

 

1       Dinamica

 

1.1             Trasferimenti di carico

 

1.1.1        In accelerazione

In accelerazione, la forza impressa contro l’asfalto dalla ruota posteriore e l’inerzia applicata sul baricentro determinano un trasferimento di carico dalla ruota anteriore a quella posteriore, reso evidente dal fatto che la moto cabra, cioè solleva la parte anteriore e abbassa quella posteriore.

Per chiarire meglio questo fatto, immaginate di appoggiare la moto su due bilance, una per ruota, e che a moto ferma entrambe le bilance segnino lo stesso peso. Se si potesse continuare a pesare la moto anche in accelerazione, accadrebbe che il peso, pur restando complessivamente uguale [1], si sposterebbe dalla ruota anteriore a quella posteriore all’aumentare dell’accelerazione.

 

le curve in moto
Figura 1 – Trasferimento di carico in accelerazione

In conseguenza di quanto detto sopra, visto che tra i fattori che influiscono sull’aderenza vi è anche il carico gravante sullo pneumatico, l’aderenza disponibile alla ruota posteriore aumenta notevolmente, mentre diminuisce quella all’anteriore. Ciò consente di scaricare a terra una grande coppia motrice e quindi di accelerare molto rapidamente prima che la ruota motrice slitti.

Tutto ciò però avviene solo a patto che l’accelerata sia progressiva. Infatti, il trasferimento di carico non avviene istantaneamente, ma il suo completamento richiede qualche frazione di secondo, perché la sospensione e lo pneumatico posteriori devono avere il tempo di comprimersi. Un’azione troppo brusca sull’acceleratore, in caso di scarsa aderenza o di coppia motrice  molto elevata, porterebbe lo pneumatico posteriore a superare il limite di aderenza prima che il trasferimento di carico eserciti il suo effetto e quindi a slittare.

Il sistema di controllo della trazione evita lo slittamento in accelerazione. Quelli più semplici intervengono tagliando la potenza in caso di slittamento, mentre i più raffinati sono collegati a piattaforme inerziali – strumenti di controllo dei movimenti della moto nello spazio – e intervengono in modo più o meno incisivo in base all’inclinazione della moto e ad altri parametri.

Oltre a quanto detto sopra, in accelerazione:

 

  • lo sterzo si alleggerisce
  • l’angolo di sterzo e l’avancorsa aumentano, rendendo la moto meno maneggevole.

 

1.1.2        In frenata

In frenata la forza frenante impressa contro l’asfalto dalle due ruote determina un trasferimento di carico dalla ruota posteriore a quella anteriore, con la moto che picchia, cioè affonda la parte anteriore e solleva quella posteriore.

 

le curve in moto
Figura 2 – Trasferimento di carico in frenata

Di conseguenza, l’aderenza disponibile all’anteriore aumenta notevolmente e quella disponibile al posteriore diminuisce nella stessa misura, perciò è possibile frenare in modo molto più incisivo davanti che dietro. È per questo che i freni anteriori sono di solito molto più potenti di quelli posteriori.

Anche in questo caso è essenziale che l’azione sul freno anteriore sia progressiva, per consentire alla sospensione e allo pneumatico anteriori di comprimersi e realizzare compiutamente il trasferimento di carico. Se invece l’azione sul freno anteriore fosse brusca, il trasferimento di carico non avrebbe il tempo di esplicare i suoi effetti positivi sull’aderenza e quindi la ruota anteriore arriverebbe prematuramente al bloccaggio, con conseguente caduta, a meno di non rilasciare immediatamente il freno mantenendo lo sterzo rigorosamente in linea con la traiettoria.

L’ABS impedisce il bloccaggio delle ruote e quindi la conseguente sbandata. Nelle versioni dotate di funzione cornering esso agisce anche molto prima del bloccaggio al fine di rendere la frenata più progressiva e rendere più dolci le variazioni di assetto in curva.

Oltre a quanto detto sopra, in frenata:

 

  • la compressione della sospensione anteriore peggiora notevolmente l’assorbimento delle sconnessioni
  • l’angolo di sterzo e l’avancorsa diminuiscono, rendendo la moto più maneggevole e favorendo l’inserimento in curva.

 

1.2             Deriva

Quando si percorre una curva, il battistrada è deformato dalla forza centripeta generata dal contatto con l’asfalto, perciò la ruota percorre una traiettoria un po’ più larga rispetto a quella che dovrebbe essere se il battistrada fosse perfettamente rigido. Questo fenomeno si chiama deriva e l’angolo tra la traiettoria teorica – cioè la direzione del piano di mezzeria della ruota – e quella reale percorsa dalla ruota è detta angolo di deriva.

 

le curve in moto
Figura 3 – Deriva dello pneumatico

L’angolo di deriva di ciascuna ruota aumenta:

 

  • all’aumentare delle forze laterali
  • al diminuire del carico.

I grafici seguenti illustrano le relazioni fra forza laterale, carico e deriva con uno pneumatico standard, vale la pena di osservarli attentamente e di meditarci sopra.

 

le curve in moto
Figura 4 – Relazione tra forza laterale e angolo di deriva, per diversi carichi

 

le curve in moto
Figura 5 – Relazione tra forza laterale e carico, per diversi angoli di deriva

Si noti che in curva anche le forze longitudinali influiscono sulla deriva delle ruote, in quanto comprendono una componente laterale dovuta alla traiettoria curva.

In pratica, la deriva in curva si comporta nei vari casi come segue:

 

  1. maggiore è la velocità a parità di raggio della traiettoria, cioè maggiore è l’angolo di inclinazione del sistema moto + pilota, più la deriva aumenta (aumenta la forza laterale ma non il carico)
  2. più il carico si trasferisce dinamicamente su una ruota, più la sua deriva diminuisce (aumenta il carico, ma non la forza laterale)
  3. più si applica forza frenante o accelerante a una ruota, più la sua deriva aumenta (la forza è diretta longitudinalmente rispetto allo pneumatico, ma la sua componente trasversale dovuta alla traiettoria curva aumenta la forza laterale)

 

1.3             Momenti imbardanti dovuti alle variazioni di velocità

Come abbiamo visto nel paragrafo 1.5.2 della Parte 1 di questo articolo, durante la percorrenza della curva, le ruote percorrono una traiettoria più esterna rispetto a quella del baricentro. Per tale ragione, ogni variazione della velocità impressa alle ruote con il gas e i freni determina un momento imbardante che si somma o si sottrae a quello autoraddrizzante naturalmente presente in curva. In particolare:

 

  1. una decelerazione aumenta il momento imbardante ad allargare, cioè spinge la moto ad andare ancora più dritta.

 

le curve in moto
Figura 6 – Momento imbardante ad allargare

 

  • un’accelerazione aggiunge un momento imbardante a stringere, cioè riduce la tendenza della moto ad andare dritta e, se il baricentro è alto, può addirittura arrivare a spingerla a chiudere la curva.

 

le curve in moto
Figura 7 – Momento imbardante a stringere

Questa è la ragione per cui nelle gare si vedono moto che escono in impennata dalle curve senza partire per la tangente.

 

le curve in moto
Figura 8 – Impennata in curva in accelerazione

 

1.4             Effetti della diversa posizione del baricentro

La posizione del baricentro influenza profondamente il comportamento della moto.

 

1.4.1       Variazione della posizione longitudinale

Quando il baricentro si trova sulla verticale del centro dell’interasse, il carico statico (cioè il peso da fermo) della moto grava in misura uguale su entrambe le ruote. Via via che il baricentro viene spostato in avanti, aumenta il carico statico sulla ruota anteriore e diminuisce corrispondentemente quello sulla ruota posteriore, e viceversa.

A parità di altezza del baricentro, una moto con il baricentro avanzato:

 

  1. ha più aderenza usando il freno anteriore, anche sui fondi scivolosi
  2. impenna con maggior difficoltà
  3. ha meno trazione in accelerazione
  4. si ribalta in avanti più facilmente.

 

le curve in moto
Figura 9 – Baricentro avanzato e ribaltamento in frenata

Una moto con il baricentro arretrato invece:

 

  1. ha più trazione in accelerazione, anche sui fondi scivolosi
  2. si ribalta in avanti con maggior difficoltà
  3. ha meno aderenza usando il freno anteriore
  4. impenna più facilmente.

 

le curve in moto
Figura 10 – Baricentro arretrato e ribaltamento in accelerazione

Il pilota può modificare entro certi limiti a proprio vantaggio la posizione longitudinale del baricentro del sistema, per esempio spostandosi in avanti nelle forti accelerazioni e indietro nelle frenate decise, in modo da allontanare il limite di ribaltamento, oppure spostandosi indietro nelle forti accelerazioni, se è un amante delle impennate.

 

1.4.2        Variazione dell’altezza

In generale, una moto con il baricentro alto è più reattiva e maneggevole di una col baricentro basso, in quanto:

 

  • ha più trazione in accelerazione, perché il trasferimento di peso sulla ruota posteriore avviene più rapidamente
  • ha più aderenza usando il freno anteriore, perché il trasferimento di peso sulla ruota anteriore avviene più rapidamente

 

le curve in moto
Figura 11 – Altezza baricentro e reattività alle accelerazioni

 

  • è soggetta a una minor forza centrifuga a parità di velocità di percorrenza (cioè di velocità angolare) e raggio della traiettoria seguita dalle ruote, perché il baricentro percorre una traiettoria più vicina al centro geometrico della curva.

 

le curve in moto
Figura 14  – Altezza del baricentro in curva

Tutte i vantaggi descritti sopra rendono la moto con il baricentro alto particolarmente efficace nel misto stretto e negli slalom, perché:

 

  • la moto deve rollare per un angolo minore per passare da curva a controcurva
  • il baricentro segue una traiettoria più interna, con minor forza centrifuga da vincere
  • la moto chiude meglio la curva in accelerazione, grazie al maggior momento imbardante dovuto all’aumentata distanza tra la traiettoria della ruota posteriore e il baricentro.

Per contro, la stessa moto:

 

  • è limitata nell’accelerazione massima dal fatto che impenna più facilmente

 

le curve in moto
Figura 15 – Altezza baricentro e ribaltamento in accelerazione

 

  • è limitata nella frenata al limite dal fatto che si ribalta in avanti più facilmente

 

le curve in moto
Figura 16 – Altezza baricentro e ribaltamento in frenata

 

  • tende ad allargare di più la traiettoria in frenata, a causa del maggior momento imbardante dovuto all’aumentata distanza tra le traiettorie delle ruote e il baricentro.

Ho evitato finora di parlare della velocità di rollio, perché gli effetti della variazione di altezza del baricentro sono complessi. È vero che il baricentro alto aumenta l’inerzia e quindi riduce la velocità di rollio, ma è altrettanto vero che, a causa dello spessore degli pneumatici, una moto con il baricentro alto:

 

  • si deve inclinare di meno in curva a causa della larghezza degli pneumatici e questo riduce il tempo necessario per rollare da curva a controcurva. Il fenomeno è illustrato nella figura che segue:

 

le curve in moto
Figura 12  – Altezza del baricentro e angolo di piega

 

  • è facilitata nell’inserimento in curva dal fatto che il baricentro si sposta di lato più rapidamente all’inclinarsi della moto e perciò vince più facilmente la resistenza creata dallo spostamento verso l’interno del punto di contatto dello pneumatico a terra dovuto alla larghezza di questo – se il baricentro è molto basso e la ruota posteriore è molto larga e piatta, può addirittura diventare difficile o impossibile inclinare la moto [2], come nell’esempio a destra della figura che segue:

 

le curve in moto
Figura 13  – Altezza del baricentro e velocità di rollio

 

1.4.3       Variazione della posizione laterale

Il baricentro della moto si trova di solito nel piano di mezzeria della stessa [3]. Il pilota invece può spostarsi lateralmente e quindi modificare la posizione del baricentro del sistema moto + pilota per variare l’inclinazione e modificare la traiettoria, come abbiamo visto nella Parte 1 di questo articolo.

 

1.5             Sospensioni

Le sospensioni sono studiate con cura in sede di progetto per assicurare il miglior compromesso tra tenuta di strada e confort in rapporto all’uso per il quale la moto è destinata.

Sull’argomento si potrebbero scrivere libri, qui di seguito ci limiteremo a vedere le nozioni più importanti ai fini del controllo della moto in curva.

I parametri importanti delle sospensioni sono:

 

  1. l’escursione – o corsa – cioè la distanza che le ruote percorrono tra la massima compressione e la massima estensione
  2. la rigidità, cioè la forza con cui resistono alla compressione.

Sospensioni morbide e a corsa lunga:

 

  • favoriscono l’assorbimento delle sconnessioni
  • evitano le perdite di aderenza delle ruote sullo sconnesso

Sospensioni rigide e a corsa corta:

 

  • riducono le oscillazioni e quindi l’inerzia delle masse sospese – cioè di tutto quello che sta sopra alle molle delle sospensioni: telaio, motore, persone, bagagli ecc.
  • diminuiscono la compressione delle sospensioni in piega dovuta alla forza centrifuga, massimizzando l’angolo di inclinazione possibile.

 

le curve in moto
Figura 17 – Compressione delle sospensioni in curva

 

1.5.1        Escursione

L’escursione delle sospensioni è decisa dal progettista e non può essere modificata dal pilota. In linea di massima, a moto ferma e pilota di peso standard a bordo, le sospensioni risultano compresse per circa un terzo della loro escursione, in modo da potersi comprimere per altri due terzi o estendersi per un terzo in base ai trasferimenti di carico e alle sconnessioni della strada. Piloti più leggeri o pesanti della media richiedono la regolazione del precarico delle molle (e in casi estremi la loro sostituzione con altre più adatte) per compensare la variazione di peso e mantenere l’assetto conforme al progetto, e un adattamento ancora maggiore è richiesto quando si trasportano passeggero e bagagli. Perciò è indispensabile regolare almeno la sospensione posteriore – quella che sopporta la maggior parte del carico aggiuntivo – ogni volta che si cambia configurazione.

Mantenere un precarico insufficiente peggiora notevolmente il comportamento della moto sotto vari i punti di vista:

 

  • peggiora nettamente l’assorbimento delle sconnessioni
  • lo sterzo diventa:
    • meno preciso
    • meno rapido
    • più pesante
  • diminuisce la luce a terra in curva.

Ciò vale anche per i corti di gamba che riducono il precarico della sospensione posteriore per abbassare l’altezza della sella: è un errore da evitare. Se non toccate terra sulla moto dei vostri sogni:

 

  • adottate una sella più bassa
  • se ciò non basta, acquistate la versione ribassata del modello, se disponibile
  • se tale versione non è disponibile, cambiate i vostri sogni.

 

1.5.2        Rigidità

La rigidità della sospensione dipende dalla molla, che può essere più o meno rigida, e dall’ammortizzatore, che può essere più o meno frenato. Contrariamente a quanto molti credono, la regolazione del precarico non ha alcuna influenza sulla rigidità della sospensione, anche se essa può influenzare in peggio la capacità di assorbire le sconnessioni, se il precarico è eccessivo o troppo basso, perché la sospensione raggiunge più facilmente il fondo corsa in estensione o in compressione.

Sulle sospensioni più economiche, la rigidità non è regolabile e molla ed ammortizzatore sono scelti in base all’uso per cui la moto è progettata. Salendo di livello diventano disponibili regolazioni della frenatura idraulica dell’ammortizzatore più o meno sofisticate e ampie, in modo da cucirsi addosso l’assetto su misura o, più di frequente, combinare disastri dovuti all’incompetenza.

Le moto più sofisticate offrono sospensioni a controllo elettronico che adattano il proprio comportamento alle condizioni del fondo stradale e in base alle scelte effettuate dal pilota durante la guida.

 

1.5.3        Sospensioni pro-dive e anti-dive

La forcella tradizionale è inclinata in modo tale che quando essa si comprime, l’asse della ruota arretra; per tale ragione, l’uso del freno anteriore la fa comprimere più di quanto sia necessario a causa del trasferimento di carico. In altre parole, la forcella ha un comportamento pro-dive, tanto maggiore, quanto maggiore è il suo angolo rispetto alla verticale.

 

Figura 18 – Arretramento del perno ruota su una forcella tradizionale

Le sospensioni anti-dive evitano questo effetto grazie alla propria geometria, che rende pressoché verticale il movimento del perno ruota durante la compressione. In questo modo la forza frenante applicata alla ruota non influisce sull’affondamento, che è dovuto soltanto al trasferimento di carico.

 

Figura 19 – Comportamento del perno ruota con la sospensione Telelever

I vantaggi di questo tipo di sospensione sono:

 

  1. una maggior capacità di assorbimento delle sconnessioni dovuta all’adozione di molle e ammortizzatori più morbidi rispetto a quelli necessari con le forcelle tradizionali
  2. un aumento del comfort dovuto all’assetto piatto in frenata
  3. una maggior stabilità in frenata, dovuta al mancato accorciamento dell’interasse
  4. una ridotta tendenza a bloccare la ruota anteriore in frenata, grazie al minor tempo necessario per ottenere il trasferimento di carico sull’anteriore.

Per contro, una sospensione anti-dive mantiene il baricentro della moto più alto in frenata rispetto a una tradizionale, ma il conseguente maggior rischio di ribaltamento è mitigato dal fatto che l’interasse non si accorcia.

Sospensioni di questo genere sono piuttosto rare ed equipaggiano soltanto alcuni modelli di gamma alta della BMW e la versione più recente della Honda Gold Wing.

 

le curve in moto
Figura 20 – Sospensione anteriore anti-dive della Honda Gold Wing 2018

 

1.6             Momento sterzante dovuto alla frenata anteriore

A moto inclinata, il punto di contatto di una ruota a terra si sposta verso l’interno della curva, mentre l’asse di sterzo giace sempre nel piano di simmetria della moto. Per tale ragione, una frenata anteriore genera un momento che tende a chiudere lo sterzo e quindi a sbilanciare la moto verso l’esterno, allargando la traiettoria.

 

le curve in moto
Figura 21 – Momento sterzante indotto dal freno anteriore

Questo effetto può variare molto, da quasi nullo a decisamente evidente, ed aumenta se la ruota anteriore è larga, se il battistrada ha un profilo turistico (non a V) o se esso è spiattellato (usurato al centro) dall’uso in autostrada, perché in tali casi aumenta lo spostamento del punto di contatto a moto inclinata e quindi il braccio di leva tra questo e l’asse di sterzo.

 

2       Gestire la traiettoria con la variazione della velocità

Abbiamo visto nella Parte I di questo articolo che lo sterzo e lo spostamento del corpo del pilota consentono di inclinare e quindi far deviare la moto in qualsiasi situazione della guida, sia in rettilineo che a curva già impostata.

Freni e gas non consentono di impostare una curva, in quanto a sterzo e moto dritti ogni loro effetto si esplica nel piano verticale di simmetria della moto [4], però a moto inclinata hanno effetti sulla sua traiettoria e quindi possono essere usati a tale scopo.

Le variazioni di velocità in curva influiscono sull’inerzia della moto, sui carichi gravanti sulle ruote, sulle derive degli pneumatici e sulla direzione dello sterzo, perciò l’analisi dei loro effetti sul comportamento della moto deve tenere conto contemporaneamente di tutti questi aspetti.

Inoltre, gli effetti prodotti variazioni nella direzione degli pneumatici sulla traiettoria della moto in curva sono più complessi da analizzare che sulle auto, in quanto bisogna tenere presente che:

 

  1. ogni variazione nella direzione delle ruote non genera solo una variazione della traiettoria, ma anche una variazione dell’inclinazione e questo, come abbiamo visto nel paragrafo 1.4 della Parte I, influenza a sua volta la traiettoria
  2. ciascuna manovra produce effetti contrastanti fra loro, perciò il risultato complessivo può andare in una direzione o in quella opposta, secondo quali effetti prevalgono
  3. finché non si raggiunge il limite di aderenza, la traiettoria della moto è determinata dalle sue variazioni di inclinazione conseguenti alle variazioni nella direzione delle ruote, mentre all’approssimarsi del limite di aderenza, gli pneumatici non riescono più a stringere la traiettoria, che quindi in questi casi è decisa dalle derive e dalla forza centrifuga.

Facciamo l’esempio di un aumento della deriva della ruota anteriore, che quindi punterà più verso l’esterno della curva:

 

  • finché c’è aderenza, ciò sbilancerà la moto verso l’interno e quindi essa stringerà la traiettoria
  • una volta raggiunto il limite, la moto non riuscirà a stringere la traiettoria, anzi, la allargherà, perché l’avantreno scivolerà verso l’esterno, e insistendo, perderà l’aderenza e la moto finirà in una caduta low-side (cioè con il pilota sul lato interno della curva).

Nei prossimi paragrafi vedremo che cosa accade nei diversi casi, tenendo sempre presente che quando una moto curva, essa è sempre soggetta agli effetti autoraddrizzanti descritti nel paragrafo 1.5. della Parte 1.

 

2.1             Accelerazione

L’accelerazione della ruota posteriore causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota posteriore
  2. induce un momento imbardante che tende a far stringere la traiettoria
  3. aumenta la forza centrifuga, con tendenza ad allargare la traiettoria
  4. induce un trasferimento di carico dalla ruota anteriore a quella posteriore, che determina:
    • l’estensione della forcella, con conseguente riduzione della maneggevolezza
    • l’aumento della deriva della ruota anteriore
    • la diminuzione della deriva della ruota posteriore
  5. la componente laterale della forza accelerante impressa alla ruota posteriore ne aumenta la deriva, in contrasto con quanto visto al punto precedente, tanto più, quanto maggiore è l’accelerazione.

L’effetto complessivo risultante sulla traiettoria dipende:

 

  • dalla forza dell’accelerazione
  • dalla posizione del baricentro
  • dall’avvicinamento al limite di aderenza.

 

  1. se l’accelerazione è lieve, lo sbilanciamento verso l’interno dovuto al gioco delle derive compensa il momento raddrizzante dovuto all’inerzia e la moto tende a mantenere la traiettoria impostata
  2. all’aumentare dell’accelerazione, l’effetto complessivo dipende dalla posizione del baricentro della moto:
    • con un baricentro alto, prevale l’effetto imbardante a stringere e la moto continua a mantenere la traiettoria impostata senza alcuna difficoltà
    • con un baricentro basso, l’effetto imbardante a stringere non prevale e la moto tende ad andare dritta
  3. se l’accelerazione è eccessiva, la ruota posteriore supera il proprio limite di aderenza e derapa verso l’esterno e:
    • se il pilota riesce a controsterzare e a modulare l’accelerazione, controlla la sbandata
    • se il pilota non riesce, la moto cade in low-side avvitandosi verso l’interno

 

  1. se il pilota chiude il gas, la ruota posteriore riacquista bruscamente aderenza a moto sbandata, sbilanciandola con violenza verso l’esterno (high-side).

 

2.2             Frenata anteriore

 

2.2.1        Effetti sull’assetto

La frenata della ruota anteriore causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota anteriore
  2. induce un momento imbardante che tende a far allargare la traiettoria
  3. riduce notevolmente la forza centrifuga, con tendenza a stringere la traiettoria
  4. induce un trasferimento di carico dalla ruota posteriore a quella anteriore, che determina:
    • la compressione della forcella, con conseguente aumento della maneggevolezza
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  5. la componente trasversale della forza frenante dovuta alla traiettoria curva aumenta la deriva della ruota anteriore, in contrasto con quanto visto al punto precedente, tanto più, quanto più forte è la frenata
  6. determina un ulteriore affondamento della sospensione anteriore, se questa è pro-dive (forcella normale)
  7. induce un momento sterzante a chiudere che tende a raddrizzare la moto, allargando la traiettoria

L’effetto complessivo risultante sulla traiettoria dipende:

 

  • dalla forza della frenata
  • dalle caratteristiche dello pneumatico anteriore
  • dalla posizione del baricentro
  • dall’avvicinamento al limite di aderenza

In pratica, i casi possibili sono i seguenti:

 

  1. se lo pneumatico anteriore è largo e/o il suo battistrada ha un profilo turistico e/o è spiattellato, il momento sterzante diventa particolarmente evidente e la moto tende ad allargare la traiettoria, tanto più quanto più forte è la frenata – si noti che questo effetto influisce solo sulla forza esercitata dal manubrio sulle mani e non anche sulla tenuta di strada, per cui basta contrastarlo per mantenere la traiettoria
  2. all’aumentare della frenata, aumenta il momento imbardante ad allargare la traiettoria, tanto più, quanto più il baricentro è alto
  3. se la frenata è eccessiva, la ruota anteriore supera il proprio limite di aderenza, lo sterzo si chiude e la moto cade in low-side.

Si noti che con il freno anteriore è impossibile causare una caduta high-side, cosa invece sempre possibile in caso di errore nell’uso del gas e del freno posteriore, ovviamente in assenza di aiuti elettronici.

 

2.2.2        Quando si usa

Se l’effetto di chiusura dello sterzo presente sulla moto è elevato, l’uso del freno anteriore da solo può diventare controproducente, perché la moto raddrizza la traiettoria in modo eccessivo.

Se invece tale effetto è ridotto, l’uso del freno anteriore consente decelerazioni notevoli in curva e quindi permette di stringere la traiettoria efficacemente, almeno finché non ci si avvicina al limite dell’aderenza, allorché gli effetti sottosterzanti prevalgono e la moto allarga con sempre maggior decisione la traiettoria.

 

2.3             Frenata posteriore

 

2.3.1        Effetti sull’assetto

La frenata della ruota posteriore è molto più blanda di quella anteriore e quindi influisce assai meno sull’assetto. Tenendo presente tale premessa, essa causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota posteriore
  2. riduce sensibilmente la forza centrifuga, aumentando la tendenza a stringere la traiettoria
  3. induce un momento imbardante che tende a far allargare la traiettoria – più lieve di quello indotto dalla frenata anteriore, vista la traiettoria più stretta percorsa dalla ruota posteriore
  4. induce un trasferimento di carico dalla ruota posteriore a quella anteriore – più lieve di quello indotto dalla frenata anteriore, vista la minor decelerazione possibile – che determina:
    • una compressione della forcella trascurabile, perché essa è tirata indietro dal freno posteriore anziché essere compressa dall’effetto pro-dive indotto dalla frenata anteriore
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  5. la componente trasversale della forza frenante dovuta alla traiettoria curva – più lieve di quella generata dalla frenata anteriore, vista la minor decelerazione possibile – aumenta ulteriormente la deriva della ruota posteriore, tanto più, quanto più forte è la frenata.

L’effetto complessivo risultante sulla traiettoria è che la moto:

 

  1. tende in qualsiasi circostanza a mantenere la traiettoria impostata
  2. se la frenata è eccessiva, la ruota posteriore supera il proprio limite di aderenza, derapa verso l’esterno e:
    • se il pilota è bravo a controsterzare e a modulare la frenata, controlla la sbandata
    • se il pilota tiene il freno premuto, la moto cade in low-side avvitandosi verso l’interno
    • se il pilota molla il freno posteriore di scatto, la ruota posteriore riacquista bruscamente aderenza a moto sbandata, sbilanciandola con violenza verso l’esterno (caduta high-side).

 

2.3.2        Quando si usa

Il freno posteriore consente decelerazioni più blande rispetto a quello anteriore, ma non genera effetti negativi sulla traiettoria – almeno finché non si supera il limite di aderenza – né sullo sterzo né sulla compressione della forcella. Quindi esso è un ottimo strumento per correzioni di entità limitata, come:

 

  • stringere la traiettoria in caso di curva presa un po’ troppo velocemente
  • adattare la traiettoria nelle curve a stringere
  • non allargare la traiettoria nelle curve in discesa.

 

2.3.3        Freno posteriore o chiusura del gas?

Gli effetti dinamici prodotti dai due comandi sono gli stessi, ma il freno è più semplice e preciso da usare rispetto alla chiusura del gas, perché:

 

  • ha un comportamento costante e prevedibile, mentre l’effetto di una chiusura del gas varia moltissimo in base al rapporto inserito, al regime e al tipo di motore
  • consente di rallentare senza chiudere il gas, evitando ogni effetto on-off.

 

2.4             Frenata integrale

 

2.4.1        Effetti sull’assetto

La frenata integrale causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile ad entrambe le ruote, ma in misura minore su ciascuna di esse a parità di decelerazione rispetto alla frenata su una sola ruota
  2. riduce notevolmente la forza centrifuga, aumentando la tendenza a stringere la traiettoria
  3. induce un momento imbardante che tende a far allargare la traiettoria, ma in misura minore rispetto alla sola frenata anteriore a parità di decelerazione, perché la ruota posteriore percorre una traiettoria più stretta rispetto a quella anteriore
  4. rispetto alla frenata anteriore determina un momento sterzante nettamente ridotto, perché a parità di decelerazione la frenata anteriore ha un effetto minore sulla sterzata, mentre la frenata posteriore fa decelerare anche l’asse di sterzo, riducendo l’effetto
  5. induce un trasferimento di carico dalla ruota posteriore a quella anteriore, che determina:
    • la compressione della forcella minore che nel caso della sola frenata anteriore
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  6. la componente trasversale della forza frenante dovuta alla traiettoria curva aumenta la deriva di entrambe le ruote e in particolare di quella anteriore
  7. nel complesso, gli effetti sulle derive non influiscono sensibilmente sulla traiettoria.

L’effetto complessivo risultante sulla traiettoria è che la moto:

 

  1. tende in qualsiasi circostanza a mantenere la traiettoria impostata
  2. se la frenata è eccessiva – cosa piuttosto difficile, visto che la decelerazione ottenibile prima di superare il limite di aderenza è piuttosto elevata – tende a partire per la tangente sulle due ruote e quindi consente il recupero semplicemente riducendo la frenata.

 

2.4.2        Quando si usa

L’uso combinato dei due freni in curva è sempre possibile ed è nel complesso assai più efficace rispetto agli altri modi di frenare, perché:

 

  • presenta in misura assai minore l’effetto negativo sulla sterzata possibile con sola la frenata anteriore
  • consente decelerazioni assai maggiori senza mettere in crisi l’aderenza rispetto alla sola frenata posteriore
  • riduce l’affondamento della sospensione anteriore, migliorando la frenata sullo sconnesso e rendendo la guida più comoda, specialmente per il passeggero.

Ecco perché alcune moto sono equipaggiate con sistemi di frenata integrale.

l’unico caso in cui può convenire usare il solo freno anteriore è l’ingresso in curva nella guida sportiva, perché la maggior compressione della forcella aumenta la rapidità di ingresso in curva, a patto che la moto non soffra di un eccessivo momento raddrizzante dello sterzo.

 


[1] Se la strada è pianeggiante. Sui dossi il peso totale diminuirebbe e sulle cunette aumenterebbe.

[2] Questo fatto si verifica normalmente sui dragster, che hanno baricentro bassissimo e gomma posteriore molto larga e squadrata.

[3] Una eccezione famosa è costituita dalle Vespa con cambio meccanico, sempre sbilanciate a sinistra per compensare il peso del motore posto a destra della ruota posteriore.

[4] Fanno eccezione alcune moto con albero motore longitudinale, come le vecchie BMW con motore boxer e le Moto Guzzi, dove le variazioni di regime del motore influiscono sensibilmente sull’inclinazione della moto.

Dai un’occhiata ai nostri Corsi di Guida Sicura, ai nostri Tour in Moto e ai nostri Tour in Miata!

Come si fanno le curve in moto – Parte 1

Dai un’occhiata ai nostri Corsi di Guida Sicura, ai nostri Tour in Moto e ai nostri Tour in Miata!

La parte I di quest’articolo, pubblicata originariamente il 17 luglio 2021, è stata modificata il 10 luglio 2022 e nuovamente rielaborata tra il 17 e il 19 luglio dello stesso anno. Tra queste date ho acquisito maggior consapevolezza di alcuni aspetti della dinamica della moto, che mi hanno permesso di rendere più chiara, semplice e precisa sua la descrizione e di eliminare alcuni errori che avevo commesso nell’interpretare certi fenomeni.

Ringrazio Federico Canegiallo (https://www.giornalemotori.com/) per tutte le spiegazioni che ha avuto la pazienza di darmi e spero che questo mio scritto sia ora inattaccabile ai suoi occhi. 🙂

Premessa

Questo articolo ha lo scopo di descrivere il comportamento della moto in curva su strada e i modi che abbiamo per modificarlo. È più approfondito del solito e quindi è molto lungo. Per renderlo più digeribile, l’ho diviso in due parti:

Parte 1 – Sterzata e spostamento laterale del corpo

Parte 2 – Variazioni di velocità in curva

Ogni parte inizia con un capitolo in cui sono trattate le nozioni di dinamica della moto necessarie per comprendere i comportamenti descritti nel seguito. L’argomento non è trattato da un punto di vista matematico, ma solo qualitativo, perciò è comprensibile da chiunque, purché abbia tempo e voglia di leggere e capire.

Ho deciso di descrivere come si fanno le curve in moto, perché il web è pieno di articoli e di video su questo argomento, ma che in gran parte contengono errori. I peggiori poi sono vere e proprie schifezze, in cui si raccontano frescacce del tutto prive di senso, magari da gente che non sa assolutamente niente di dinamica della moto e lo ammette anche pubblicamente, con frasi tipo “io non ho la più pallida idea del perché avvenga questo, ma è così, prendetelo come un dogma”.

Leggendo i commenti a tali video, si trovano persone che li criticano, ma anche tante altre che ringraziano l’autore per avergli chiarito i loro dubbi… Questi motociclisti meritano di più, sono appassionati in cerca di risposte alle proprie domande e portarli fuori strada con spiegazioni senza senso è il peggior servizio che si possa rendere alla loro passione e alla loro sicurezza. Quest’articolo è anche per loro, o almeno per quelli tra loro che vorranno leggerlo e capirlo fino in fondo.

Sterzata e spostamento laterale del corpo

1       Equilibrio dei veicoli a due ruote

1.1       I primi tentativi

Per quasi tutta la sua lunghissima storia, l’umanità non ha mai neanche immaginato la possibilità di muoversi su veicoli a due ruote. Quest’idea cominciò a formarsi solo a cavallo tra il XVIII e il XIX secolo, in piena Rivoluzione industriale, quando le invenzioni in tutti i campi cominciarono a susseguirsi a ritmo sempre più vertiginoso.

Durante i primi tentativi ci si accorse subito che questi mezzi non erano intrinsecamente stabili e richiedevano doti non comuni alla guida, perciò fu subito chiaro che, se si voleva favorirne la diffusione, era necessario fare in modo che potessero rimanere in equilibrio il più possibile automaticamente, cioè senza intervento del pilota. Non a caso la prima bicicletta prodotta su larga scala, la “Rover” del 1885, aveva questa caratteristica – e tante altre – ripresa in tutte le biciclette successive e poi in tutte le moto fino ai nostri giorni.

Nei prossimi paragrafi vedremo come fanno i veicoli a due ruote allineate a stare in equilibrio automaticamente, cioè a essere autostabili.

1.2       Bilanciamento tra forza peso e forza centrifuga

Per mantenersi in equilibrio, un veicolo a due ruote deve sterzare nella direzione verso cui eventualmente è inclinato, in modo che la forza centrifuga [1] risultante lo spinga verso l’esterno della curva e compensi così la sua forza peso, che invece lo fa cadere verso l’interno. Se queste due forze sono in equilibrio, il veicolo mantiene costante il proprio assetto, altrimenti esso varia la propria inclinazione. In particolare:

  1. se la sterzata è eccessiva, il veicolo tenderà a raddrizzarsi, per poi inclinarsi dalla parte opposta
  2. se la sterzata è insufficiente, il veicolo tenderà a inclinarsi sempre di più.
Figura 1 – Forza centrifuga e forza peso

Se si ragiona un pò su quanto detto sopra, appare chiaro che, per rendere autostabile un veicolo del genere, sono necessarie due cose:

  • quando il veicolo si inclina da un lato, la ruota anteriore deve sterzare automaticamente e progressivamente dalla parte dell’inclinazione, ma un po’ troppo, in modo da generare un po’ di più della forza centrifuga strettamente necessaria per bilanciare la forza peso e così riportare automaticamente il veicolo in posizione verticale
  • man mano che il veicolo ritorna in posizione verticale, la ruota anteriore deve ritornare automaticamente e progressivamente nella posizione centrale, per evitare che il veicolo si inclini nella direzione opposta.

Il comportamento dello sterzo è dunque la chiave di tutto; se si riesce a farlo funzionare in questo modo, è fatta.

1.3       Fenomeni giroscopici

Le ruote della moto sono giroscopi, in quanto ruotano intorno a un asse di rotazione – il mozzo – sono simmetriche rispetto ad esso e hanno un’elevata inerzia, dovuta al loro diametro e al fatto che buona parte della propria massa è concentrata lungo la circonferenza – il cerchione e lo pneumatico. Come tali, esse sono soggette a fenomeni giroscopici di vario tipo, che hanno un ruolo fondamentale nella dinamica dei veicoli a due ruote. Nel seguito sono descritti i due fenomeni che ci interessano maggiormente.

a. Effetto giroscopico in fase di inclinazione del veicolo

Quando un veicolo a due ruote allineate si inclina, la sua ruota anteriore sterza automaticamente dalla parte dell’inclinazione [2].

Per esempio, durante un’inclinazione a sinistra, la massa del punto più alto della ruota – che è quello che durante l’inclinazione si muove più velocemente – sarà spinta verso sinistra dall’inclinazione crescente, perciò acquisirà una traiettoria diagonale diretta verso sinistra (frecce rosse) e tenderà a proseguire per inerzia lungo tale traiettoria. Essa però sarà costretta a seguire la circonferenza e quindi a rientrare verso destra, perciò tirerà la ruota a sterzare verso sinistra.

Figura 2 – Inclinazione della ruota e precessione giroscopica

Questo fenomeno può essere simulato facilmente con una ruota di bicicletta tenuta in rotazione fra le mani.

VIdeo 1 – Effetto dell’inclinazione su un giroscopio

b. Effetto giroscopico durante una curva a inclinazione costante

Durante la percorrenza della curva, quando il veicolo a due ruote ha raggiunto e mantiene un angolo di inclinazione costante, il fenomeno giroscopico descritto al precedente punto a, proprio di una ruota che si sta inclinando, cessa di manifestarsi. In assenza di altri effetti, la ruota a questo punto dovrebbe smettere di sterzare e quindi, per inerzia giroscopica, dovrebbe mantenere costante la direzione del proprio asse e proseguire dritta. Dato che, invece, continua a curvare, c’è qualcos’altro che ne determina il comportamento. La ragione di ciò sta nel fatto che, una volta che la moto sta curvando con un’inclinazione costante, la ruota anteriore non assume una traiettoria rettilinea uniforme, ma è inclinata e contemporaneamente sta traslando lateralmente per seguire la traiettoria curva. Per tale ragione si verifica quanto segue.

  1. La massa del punto superiore della ruota – quello più interno alla curva – durante il movimento roto-traslatorio della ruota stessa è costretto a seguire la circonferenza verso l’esterno e quindi a subire una forza centrifuga minore rispetto a quella della moto, ma per inerzia vorrebbe muoversi insieme a questa e quindi tira la parte anteriore della ruota verso l’interno della curva.
  2. Simmetricamente, La massa del punto inferiore della ruota – quello più esterno alla curva – durante il movimento roto-traslatorio della ruota stessa è costretto a seguire la circonferenza verso l’interno e quindi a subire una forza centrifuga maggiore rispetto a quella della moto, ma per inerzia vorrebbe muoversi insieme a questa e quindi tira la parte posteriore della ruota verso l’esterno della curva.
Figura 3 – Effetto giroscopico durante una sterzata a inclinazione costante

Il risultato di questo fenomeno è che la ruota anteriore di un veicolo a due ruote continua a sterzare verso la curva anche quando l’inclinazione dello stesso rimane costante.

SI noti che, a differenza del precedente, questo fenomeno non può essere simulato in modo efficace tenendo in mano una ruota di bicicletta mentre si sta in piedi, perche in questo modo viene sostanzialmente a mancare la traslazione della ruota verso l’interno della curva.

c. Effetto complessivo dei due fenomeni giroscopici

Nel complesso, i due fenomeni giroscopici a. e b. descritti sopra consentono alla moto di curvare quando si inclina, di mantenere sterzata la ruota anteriore durante la curva e di riportare lo sterzo verso il centro quando la moto si raddrizza. Ma allora, visto che la ruota anteriore si comporta proprio come dovrebbe, perché i primi bicicli avevano problemi di equilibrio? Perché tali effetti si manifestano in modo eccessivamente brusco, se lo sterzo non è dotato di un’adeguata avancorsa.

1.4       Avancorsa

L’avancorsa è la distanza tra il punto in cui l’asse di rotazione dello sterzo interseca il piano su cui poggia la moto e il centro dell’impronta a terra dello pneumatico anteriore. Si dice:

  • avancorsa positiva quando l’asse di sterzo cade davanti al punto di appoggio della ruota anteriore
  • avancorsa negativa quando cade dietro di esso
  • avancorsa nulla quando i due punti coincidono.
Figura 4 – Avancorsa positiva

Tutti i veicoli a due ruote moderni sono caratterizzati da un’avancorsa positiva. Infatti, essa offre due vantaggi fondamentali, che senza i quali nessun veicolo a due ruote allineate potrebbe essere autostabile.

  1. Un’avancorsa positiva rende lo sterzo più pesante da azionare, specialmente al crescere della velocità, e quindi impedisce al pilota di agire troppo bruscamente su di esso e mettere in grave rischio la stabilità. Ciò avviene, perché azionando lo sterzo, l’avantreno della moto trasla lateralmente in direzione della sterzata (si veda la successiva figura 5), opponendosi a questa con la propria inerzia. In tal modo, l’avancorsa:
    • in rettilineo, contribuisce a mantenere la ruota anteriore allineata al centro
    • all’inclinarsi della moto, limita la sterzata automatica della ruota indotta dagli effetti giroscopici descritti sopra.
  2. Quando un veicolo si inclina e la sua ruota anteriore sterza nella direzione della curva, per una semplice ragione geometrica il punto di contatto di tale ruota con il suolo si sposta in avanti. In assenza di un’adeguata avancorsa, al crescere dell’angolo di inclinazione si viene a creare un’avancorsa negativa e ciò determina l’immediata sterzata a battuta della ruota verso l’interno. Per farsi un’idea del fenomeno, basti dire che ciò è quanto avviene sui veicoli a due ruote moderni quando si tenta di salire obliquamente su un gradino.
Figura 5 – Traslazione dell’asse di sterzo e dell’avantreno a ruota sterzata

Sulle moto moderne l’avancorsa si aggira di solito intorno ai 100 mm e varia in base alle caratteristiche di ciascun modello e all’uso a cui è destinato. Come si può vedere dalla figura 3 sopra, essa dipende:

  1. dall’offset, che è la distanza tra l’asse di sterzo e il piano ad esso parallelo e passante per l’asse della ruota anteriore
  2. dall’angolo di inclinazione dell’asse di sterzo.

Combinando opportunamente questi parametri, è possibile ottenere l’avancorsa desiderata con una grande varietà di angoli di inclinazione dell’asse di sterzo, dalla BMW R75/5 di Tony Foale con sterzo verticale ai chopper con sterzo quasi orizzontale.

Figura 6 – BMW R75/5 di Tony Foale con asse di sterzo verticale
Figura 7 – Chopper

I primi bicicli stavano in equilibrio precario, appunto perché avevano sterzo quasi verticale e privo di offset e quindi avevano avancorsa prossima allo zero.

FIgura 8 – Biciclo di Michaux (1860 circa)

Il comportamento autosterzante della moto è influenzato da parecchie caratteristiche, tra cui le seguenti:

  • avancorsa (aumentandola, diminuisce la tendenza della ruota a sterzare)
  • peso della ruota anteriore, dischi inclusi (aumentandolo, aumenta la tendenza della ruota a sterzare)
  • diametro della ruota anteriore (idem)
  • inclinazione dell’asse di sterzo rispetto alla verticale, a parità di avancorsa (aumentandola, diminuisce la tendenza della ruota a sterzare)
  • peso gravante sulla ruota anteriore (aumentandolo, diminuisce la tendenza della ruota a sterzare)
  • peso delle masse poste alle estremità del manubrio (idem).

È chiaro che qualsiasi modifica apportata a questi elementi senza cognizione di causa può variare notevolmente il comportamento della moto e in casi estremi può persino renderla incontrollabile.

È infine importante notare che il comportamento autosterzante di un veicolo a due ruote si basa sul fatto che le ruote abbiano sufficiente aderenza per non derapare. Una sbandata della moto dovuta a perdita di aderenza comporta la rottura dell’equilibrio automatico, può richiedere correzioni attive da parte del pilota e può portare anche alla caduta della moto.

2       Gestire la traiettoria con lo sterzo

2.1             Come funziona

Quando siete al volante di un’auto e sterzate da una parte, gli pneumatici generano a livello dell’asfalto una forza centripeta, che tende cioè a spostarle lateralmente nella direzione della sterzata, mentre il baricentro dell’auto, che è situato più in alto, tende ad andare dritto per inerzia. La combinazione di queste due forze genera un momento che fa inclinare l’auto in direzione opposta rispetto alla sterzata.

Figura 9 – Sterzata e rollio

Questo effetto si verifica su qualsiasi veicolo che poggia su ruote e quindi anche sulle moto: se si sterza da una parte, la moto si inclina dall’altra. Una volta che la moto si inclina dalla parte “sbagliata”, per le ragioni viste nel paragrafo 1, la ruota anteriore sterza nella stessa direzione e la moto inizia a percorrere la curva.

Video 2 – Fasi del push-steering

Si noti che queste fasi si susseguono automaticamente con grande rapidità e, a parte l’impulso iniziale 1, senza alcun intervento del pilota. Non è affatto vero che per inserirsi in curva si debba sterzare prima da una parte e poi dall’altra: bisogna continure a premere sempre nella stessa direzione, poi la precessione giroscopica e l’avancorsa fanno tutto il resto [4].

Ora, se per curvare dovessimo pensare di dover sterzare al contrario, diventeremmo pazzi. Perciò conviene vedere la cosa in modo più intuitivo: per inclinare la moto in una direzione, basta premere in avanti la manopola da quel lato, e più forte sarà la pressione, più la moto si inclinerà e più curverà stretta. Ecco perché questa tecnica è chiamata in inglese push-steering, che vuol dire appunto “sterzata mediante spinta”[3].

Da quanto detto nel paragrafo 1, ricordiamo che un’avancorsa ben dimensionata fa sì che la precessione giroscopica faccia sterzare la ruota nella direzione dell’inclinazione di quel tanto che basta, da rendere la forza centrifuga lievemente eccedente rispetto alla forza peso, in modo da autostabilizzare la moto. Per tale ragione, se si vuole continuare a curvare, occorre continuare a premere sulla manopola interna, altrimenti la moto ritorna in posizione verticale e riprende la marcia rettilinea.

Il push-steering funziona sia a moto dritta che a moto inclinata, quindi esso consente sia di iniziare una curva, sia di variare l’inclinazione e quindi la traiettoria della moto durante una curva. In ogni caso, basta semplicemente:

  • premere su una manopola, per iniziare a curvare nella direzione dove si preme
  • premere maggiormente sulla manopola interna, per stringere la traiettoria
  • smettere di premere sulla manopola interna, per allargare la traiettoria.

Il video seguente illustra il funzionamento su strada di questa tecnica. Per chiarezza, le mani sono tenute aperte, senza impugnare le manopole, in modo da rendere visivamente chiaro che esse spingono.

Video 3 – Attivazione del push steering alla guida

Sperimentare l’efficacia del push-steering alla guida è piuttosto semplice. Lungo un rettilineo, piazzatevi a una velocità media – 60-70 km/h va benissimo – togliete la mano sinistra dal manubrio e con la destra spingete la manopola in avanti – cioè sterzate verso sinistra; vi accorgerete che la moto curverà subito verso destra.

Il push-steering non funziona alle bassissime velocità, allorché lo sterzo va azionato dalla parte giusta. Perché? Come abbiamo visto sopra, la sospensione anteriore delle moto è caratterizzata dalla presenza dell’avancorsa, a causa della quale la ruota poggia a terra più indietro rispetto all’asse dello sterzo. Per questa ragione, se si sterza a moto ferma o quasi, l’asse dello sterzo si sposta dalla parte della sterzata e con esso tutta la parte anteriore della moto. In questo modo la moto si sbilancia leggermente dalla parte della sterzata e quindi tende a cadere nella direzione della curva, di quel tanto che basta a vincere la ridottissima forza centrifuga.

Figura 10 – Effetto di una sterzata sul baricentro

Quando invece la velocità supera una certa soglia limite – intorno ai 15-20 km/h, dipende principalmente dalla misura dell’avancorsa – la forza centrifuga prevale su questo effetto e il push-steering inizia a funzionare.

2.2             Pregi

Il push-steering:

  • funziona sia a moto dritta che a moto inclinata
  • è molto preciso
  • consente di impostare qualsiasi traiettoria
  • è efficace con qualsiasi tipo di moto, anche quelle più pesanti
  • è rapido, anche se non istantaneo, per via della sterzata iniziale in senso contrario necessaria alle velocità normali, specialmente in sella a una moto pesante, perché la durata e l’ampiezza della fase iniziale negativa aumentano con l’aumentare della massa.

2.3             Difetti

Di suo, il push-steering non ha difetti. Esso però ha dei limiti nella guida veloce, che vengono superati combinando questa tecnica con lo spostamento del baricentro del pilota, come spiegato più avanti.

2.4             Quando si usa

Grazie a tali caratteristiche, la tecnica del push-steering è efficace per:

  • impostare e percorrere qualsiasi traiettoria con grande precisione
  • variare anche notevolmente una traiettoria a curva già impostata
  • schivare un ostacolo improvviso, anche di grandi dimensioni.

Insomma, è una tecnica buona per tutti gli usi. Non a caso è usata da tutti i motociclisti, anche quelli – la maggioranza – che non ne sono consapevoli. Alcuni di questi sono addirittura convinti di azionare lo sterzo dalla parte della curva, il che è semplicemente impossibile.

Ma anche se tutti usano il push-steering, esserne coscienti comporta due grandi vantaggi:

  1. consente di manovrare più efficacemente qualsiasi moto e in particolare quelle più pesanti
  2. consente di schivare molto più efficacemente gli ostacoli.

Chi invece non ne è cosciente, faticherà di più a controllare la moto e, soprattutto, reagirà al pericolo in modo meno efficace o addirittura controproducente. Ho visto con i miei occhi – e in un caso ero passeggero – motociclisti che, per evitare un ostacolo, gli finivano addosso nel tentativo di sterzare dalla parte opposta.

Ecco perché è fondamentale che tutti i motociclisti prendano coscienza del push-steering e imparino a sfruttarne le potenzialità.

3       Gestire la traiettoria con lo spostamento laterale del corpo del pilota

3.1             Come funziona

Se il pilota sposta il proprio baricentro lateralmente rispetto alla moto, contrariamente a quanto molti credono (me per primo, per lungo tempo), la moto non si inclina dalla parte verso cui il pilota si sporge, bensì nella direzione opposta. Ciò avviene per il principio di conservazione della quantità di moto, per il quale, in assenza di forze esterne al sistema moto + pilota, il baricentro del sistema stesso continua a muoversi per inerzia nella stessa direzione. Il pilota fa parte del sistema, per cui quando egli sposta il proprio baricentro da un lato, necessariamente il baricentro della moto si sposta dall’altro. Naturalmente, il tutto è influenzato dal rapporto tra il peso della moto e quello del pilota: più la moto è pesante rispetto al pilota, meno essa si inclinerà allo spostarsi di questo.

Come sappiamo, la precessione giroscopica, tenuta a bada dall’avancorsa, fa sterzare la ruota nella direzione dell’inclinazione della moto. Anche in questo caso, quindi, esattamente come nel caso del push-steering, la ruota sterza in direzione contraria a quella verso cui si vuole andare e perciò si realizza la stessa sequenza:

  1. la moto viene inclinata dalla parte sbagliata
  2. la ruota anteriore sterza dalla parte sbagliata
  3. la moto si sbilancia nella direzione giusta, cioè quella del busto
  4. la ruota anteriore per precessione giroscopica sterza nella stessa direzione
  5. la moto curva nella direzione voluta.

Da quanto detto nel paragrafo 1, ricordiamo che un’avancorsa ben dimensionata fa sì che la precessione giroscopica faccia sterzare la ruota nella direzione dell’inclinazione abbastanza, da rendere la forza centrifuga lievemente eccedente rispetto alla forza peso, in modo da autostabilizzare la moto. Per continuare a curvare, occorre quindi continuare a sporgersi verso l’interno per mantenere la moto più sollevata e quindi diminuire leggermente la sterzata della ruota anteriore.

Alcuni definiscono questa tecnica “premere sulle pedane”, ma è una denominazione impropria, perché se si fa solo questo, senza spostare il busto, non succede assolutamente nulla. Spostando il busto e scaricando il peso sulla pedana si ottiene un maggior spostamento del pilota, un maggior spostamento in senso opposto del baricentro della moto e quindi una maggior efficacia della manovra.

Molti motociclisti affermano di curvare in questo modo, ma in realtà non spostano il corpo in maniera significativa e curvano con il push-steering. Ma anche quelli che effettivamente spostano il corpo, senza volerlo applicano quasi sempre anche forze longitudinali sulle manopole e quindi combinano lo spostamento del proprio baricentro con il push-steering. L’unico modo per curvare con questa tecnica “in purezza” consiste nel metterla in pratica senza le mani sul manubrio. Se ci provate – lungo un tratto senza traffico in discesa o inserendo il cruise control – scoprirete quanto effettivamente la vostra traiettoria nella guida di tutti i giorni è dovuta al modo in cui spostate il vostro baricentro e quanto invece alla vostra azione sullo sterzo. Se pensavate che tutto il merito andasse al vostro tuffarvi con il corpo nelle curve, rimarrete profondamente delusi.

Il video che segue illustra il funzionamento di questa tecnica, senza mani, per verificarne la reale efficacia.

Video 4 – Spostamento laterale del corpo

3.3.2        Pregi

Questa tecnica, nell’ipotesi che sia usata da sola, cioè senza combinarla col push-steering:

  • funziona sia a moto dritta che a moto inclinata
  • consente ampi cambiamenti di direzione
  • funziona anche senza mani.

3.3.3        Difetti

Questa tecnica:

  • è più lenta e meno precisa del push-steering, specialmente nella guida veloce e nelle curve strette
  • è assai meno efficace sulle moto pesanti, dove il peso del pilota perde importanza rispetto al peso totale.

3.3.4        Quando si usa

Al di fuori del caso della guida senza mani, lo spostamento del peso è in realtà sempre abbinato all’uso dello sterzo e il bello è che lo migliora in qualsiasi circostanza, perché:

  • aiuta a mantenere l’equilibrio nelle manovre a bassissima velocità
  • rende più rapida la sterzata, specialmente su moto dallo sterzo pesante, perché
  • minimizza il rischio di grattare qualche cosa a terra nella guida veloce, perché consente una minor inclinazione della moto a parità di velocità e di raggio della traiettoria
  • dona piacevolezza alla guida, in quanto il pilota percepisce che la moto mantiene la traiettoria curva senza dover agire sullo sterzo.
Figura 11 – Minor inclinazione della moto con lo spostamento del corpo

Insomma, l’accoppiata push-steering + spostamento del peso è vantaggiosa in tutte le circostanze della guida e specialmente nella guida veloce..

[1] In realtà la forza centrifuga è solo una forza apparente (https://it.wikipedia.org/wiki/Forza_centrifuga), ma è un concetto comodo da usare.

[2] L’effetto si manifesta anche sulla ruota posteriore, che però non ha la libertà di sterzare e scarica tale tendenza sul forcellone.

[3] Per definire il push-steering si usa spesso il termine “controsterzo”, che in realtà è la manovra con cui si recupera una sbandata del retrotreno con una sterzata in senso contrario rispetto alla curva. Nel nostro caso non c’è alcuna sbandata da recuperare, per cui il termine è improprio.

[4] Qui cade in errore perfino l’Ing. Vittore Cossalter, secondo il quale il pilota prima sterza in senso contrario e poi, una volta che la moto si inclina dalla parte giusta, gira lentamente lo sterzo nella direzione della curva (Motorcycle Dynamics edizione italiana, seconda edizione 2014, par. 8.5 e 8.6 pag. 301 e 303).

Dai un’occhiata ai nostri Corsi di Guida Sicura, ai nostri Tour in Moto e ai nostri Tour in Miata!