Archivi categoria: Il Bar della Tecnica

Il Bar della Tecnica

 

La tecnica motociclistica e la fisica che ne regola il comportamento, miti da sfatare e leggende da verificare, uno spazio per due chiacchiere su quel misterioso e affascinante oggetto chiamato motocicletta.

 

 

Come si fanno le curve in moto – Parte 2

[vc_row][vc_column][vc_column_text]

Premessa

Questo articolo è il seguito della Parte 1 – Sterzata e spostamento laterale del corpo, dove sono descritti i modi per far curvare la moto. Qui invece vedremo che cosa succede alle traiettorie quando si accelera e si frena in curva.

Anche questa parte parte inizia con un capitolo in cui sono trattate le nozioni di dinamica della moto necessarie per comprendere i comportamenti descritti nel seguito.

 

Variazioni di velocità in curva

 

1       Dinamica

 

1.1             Trasferimenti di carico

 

1.1.1        In accelerazione

In accelerazione, la forza impressa contro l’asfalto dalla ruota posteriore e l’inerzia applicata sul baricentro determinano un trasferimento di carico dalla ruota anteriore a quella posteriore, reso evidente dal fatto che la moto cabra, cioè solleva la parte anteriore e abbassa quella posteriore.

Per chiarire meglio questo fatto, immaginate di appoggiare la moto su due bilance, una per ruota, e che a moto ferma entrambe le bilance segnino lo stesso peso. Se si potesse continuare a pesare la moto anche in accelerazione, accadrebbe che il peso, pur restando complessivamente uguale [1], si sposterebbe dalla ruota anteriore a quella posteriore all’aumentare dell’accelerazione.

 

le curve in moto
Figura 1 – Trasferimento di carico in accelerazione

In conseguenza di quanto detto sopra, visto che tra i fattori che influiscono sull’aderenza vi è anche il carico gravante sullo pneumatico, l’aderenza disponibile alla ruota posteriore aumenta notevolmente, mentre diminuisce quella all’anteriore. Ciò consente di scaricare a terra una grande coppia motrice e quindi di accelerare molto rapidamente prima che la ruota motrice slitti.

Tutto ciò però avviene solo a patto che l’accelerata sia progressiva. Infatti, il trasferimento di carico non avviene istantaneamente, ma il suo completamento richiede qualche frazione di secondo, perché la sospensione e lo pneumatico posteriori devono avere il tempo di comprimersi. Un’azione troppo brusca sull’acceleratore, in caso di scarsa aderenza o di coppia motrice  molto elevata, porterebbe lo pneumatico posteriore a superare il limite di aderenza prima che il trasferimento di carico eserciti il suo effetto e quindi a slittare.

Il sistema di controllo della trazione evita lo slittamento in accelerazione. Quelli più semplici intervengono tagliando la potenza in caso di slittamento, mentre i più raffinati sono collegati a piattaforme inerziali – strumenti di controllo dei movimenti della moto nello spazio – e intervengono in modo più o meno incisivo in base all’inclinazione della moto e ad altri parametri.

Oltre a quanto detto sopra, in accelerazione:

 

  • lo sterzo si alleggerisce
  • l’angolo di sterzo e l’avancorsa aumentano, rendendo la moto meno maneggevole.

 

1.1.2        In frenata

In frenata la forza frenante impressa contro l’asfalto dalle due ruote determina un trasferimento di carico dalla ruota posteriore a quella anteriore, con la moto che picchia, cioè affonda la parte anteriore e solleva quella posteriore.

 

le curve in moto
Figura 2 – Trasferimento di carico in frenata

Di conseguenza, l’aderenza disponibile all’anteriore aumenta notevolmente e quella disponibile al posteriore diminuisce nella stessa misura, perciò è possibile frenare in modo molto più incisivo davanti che dietro. È per questo che i freni anteriori sono di solito molto più potenti di quelli posteriori.

Anche in questo caso è essenziale che l’azione sul freno anteriore sia progressiva, per consentire alla sospensione e allo pneumatico anteriori di comprimersi e realizzare compiutamente il trasferimento di carico. Se invece l’azione sul freno anteriore fosse brusca, il trasferimento di carico non avrebbe il tempo di esplicare i suoi effetti positivi sull’aderenza e quindi la ruota anteriore arriverebbe prematuramente al bloccaggio, con conseguente caduta, a meno di non rilasciare immediatamente il freno mantenendo lo sterzo rigorosamente in linea con la traiettoria.

L’ABS impedisce il bloccaggio delle ruote e quindi la conseguente sbandata. Nelle versioni dotate di funzione cornering esso agisce anche molto prima del bloccaggio al fine di rendere la frenata più progressiva e rendere più dolci le variazioni di assetto in curva.

Oltre a quanto detto sopra, in frenata:

 

  • la compressione della sospensione anteriore peggiora notevolmente l’assorbimento delle sconnessioni
  • l’angolo di sterzo e l’avancorsa diminuiscono, rendendo la moto più maneggevole e favorendo l’inserimento in curva.

 

1.2             Deriva

Quando si percorre una curva, il battistrada è deformato dalla forza centripeta generata dal contatto con l’asfalto, perciò la ruota percorre una traiettoria un po’ più larga rispetto a quella che dovrebbe essere se il battistrada fosse perfettamente rigido. Questo fenomeno si chiama deriva e l’angolo tra la traiettoria teorica – cioè la direzione del piano di mezzeria della ruota – e quella reale percorsa dalla ruota è detta angolo di deriva.

 

le curve in moto
Figura 3 – Deriva dello pneumatico

L’angolo di deriva di ciascuna ruota aumenta:

 

  • all’aumentare delle forze laterali
  • al diminuire del carico.

I grafici seguenti illustrano le relazioni fra forza laterale, carico e deriva con uno pneumatico standard, vale la pena di osservarli attentamente e di meditarci sopra.

 

le curve in moto
Figura 4 – Relazione tra forza laterale e angolo di deriva, per diversi carichi

 

le curve in moto
Figura 5 – Relazione tra forza laterale e carico, per diversi angoli di deriva

Si noti che in curva anche le forze longitudinali influiscono sulla deriva delle ruote, in quanto comprendono una componente laterale dovuta alla traiettoria curva.

In pratica, la deriva in curva si comporta nei vari casi come segue:

 

  1. maggiore è la velocità a parità di raggio della traiettoria, cioè maggiore è l’angolo di inclinazione del sistema moto + pilota, più la deriva aumenta (aumenta la forza laterale ma non il carico)
  2. più il carico si trasferisce dinamicamente su una ruota, più la sua deriva diminuisce (aumenta il carico, ma non la forza laterale)
  3. più si applica forza frenante o accelerante a una ruota, più la sua deriva aumenta (la forza è diretta longitudinalmente rispetto allo pneumatico, ma la sua componente trasversale dovuta alla traiettoria curva aumenta la forza laterale)

 

1.3             Momenti imbardanti dovuti alle variazioni di velocità

Come abbiamo visto nel paragrafo 1.5.2 della Parte 1 di questo articolo, durante la percorrenza della curva, le ruote percorrono una traiettoria più esterna rispetto a quella del baricentro. Per tale ragione, ogni variazione della velocità impressa alle ruote con il gas e i freni determina un momento imbardante che si somma o si sottrae a quello autoraddrizzante naturalmente presente in curva. In particolare:

 

  1. una decelerazione aumenta il momento imbardante ad allargare, cioè spinge la moto ad andare ancora più dritta.

 

le curve in moto
Figura 6 – Momento imbardante ad allargare

 

  • un’accelerazione aggiunge un momento imbardante a stringere, cioè riduce la tendenza della moto ad andare dritta e, se il baricentro è alto, può addirittura arrivare a spingerla a chiudere la curva.

 

le curve in moto
Figura 7 – Momento imbardante a stringere

Questa è la ragione per cui nelle gare si vedono moto che escono in impennata dalle curve senza partire per la tangente.

 

le curve in moto
Figura 8 – Impennata in curva in accelerazione

 

1.4             Effetti della diversa posizione del baricentro

La posizione del baricentro influenza profondamente il comportamento della moto.

 

1.4.1       Variazione della posizione longitudinale

Quando il baricentro si trova sulla verticale del centro dell’interasse, il carico statico (cioè il peso da fermo) della moto grava in misura uguale su entrambe le ruote. Via via che il baricentro viene spostato in avanti, aumenta il carico statico sulla ruota anteriore e diminuisce corrispondentemente quello sulla ruota posteriore, e viceversa.

A parità di altezza del baricentro, una moto con il baricentro avanzato:

 

  1. ha più aderenza usando il freno anteriore, anche sui fondi scivolosi
  2. impenna con maggior difficoltà
  3. ha meno trazione in accelerazione
  4. si ribalta in avanti più facilmente.

 

le curve in moto
Figura 9 – Baricentro avanzato e ribaltamento in frenata

Una moto con il baricentro arretrato invece:

 

  1. ha più trazione in accelerazione, anche sui fondi scivolosi
  2. si ribalta in avanti con maggior difficoltà
  3. ha meno aderenza usando il freno anteriore
  4. impenna più facilmente.

 

le curve in moto
Figura 10 – Baricentro arretrato e ribaltamento in accelerazione

Il pilota può modificare entro certi limiti a proprio vantaggio la posizione longitudinale del baricentro del sistema, per esempio spostandosi in avanti nelle forti accelerazioni e indietro nelle frenate decise, in modo da allontanare il limite di ribaltamento, oppure spostandosi indietro nelle forti accelerazioni, se è un amante delle impennate.

 

1.4.2        Variazione dell’altezza

In generale, una moto con il baricentro alto è più reattiva e maneggevole di una col baricentro basso, in quanto:

 

  • ha più trazione in accelerazione, perché il trasferimento di peso sulla ruota posteriore avviene più rapidamente
  • ha più aderenza usando il freno anteriore, perché il trasferimento di peso sulla ruota anteriore avviene più rapidamente

 

le curve in moto
Figura 11 – Altezza baricentro e reattività alle accelerazioni

 

  • è soggetta a una minor forza centrifuga a parità di velocità di percorrenza (cioè di velocità angolare) e raggio della traiettoria seguita dalle ruote, perché il baricentro percorre una traiettoria più vicina al centro geometrico della curva.

 

le curve in moto
Figura 14  – Altezza del baricentro in curva

Tutte i vantaggi descritti sopra rendono la moto con il baricentro alto particolarmente efficace nel misto stretto e negli slalom, perché:

 

  • la moto deve rollare per un angolo minore per passare da curva a controcurva
  • il baricentro segue una traiettoria più interna, con minor forza centrifuga da vincere
  • la moto chiude meglio la curva in accelerazione, grazie al maggior momento imbardante dovuto all’aumentata distanza tra la traiettoria della ruota posteriore e il baricentro.

Per contro, la stessa moto:

 

  • è limitata nell’accelerazione massima dal fatto che impenna più facilmente

 

le curve in moto
Figura 15 – Altezza baricentro e ribaltamento in accelerazione

 

  • è limitata nella frenata al limite dal fatto che si ribalta in avanti più facilmente

 

le curve in moto
Figura 16 – Altezza baricentro e ribaltamento in frenata

 

  • tende ad allargare di più la traiettoria in frenata, a causa del maggior momento imbardante dovuto all’aumentata distanza tra le traiettorie delle ruote e il baricentro.

Ho evitato finora di parlare della velocità di rollio, perché gli effetti della variazione di altezza del baricentro sono complessi. È vero che il baricentro alto aumenta l’inerzia e quindi riduce la velocità di rollio, ma è altrettanto vero che, a causa dello spessore degli pneumatici, una moto con il baricentro alto:

 

  • si deve inclinare di meno in curva a causa della larghezza degli pneumatici e questo riduce il tempo necessario per rollare da curva a controcurva. Il fenomeno è illustrato nella figura che segue:

 

le curve in moto
Figura 12  – Altezza del baricentro e angolo di piega

 

  • è facilitata nell’inserimento in curva dal fatto che il baricentro si sposta di lato più rapidamente all’inclinarsi della moto e perciò vince più facilmente la resistenza creata dallo spostamento verso l’interno del punto di contatto dello pneumatico a terra dovuto alla larghezza di questo – se il baricentro è molto basso e la ruota posteriore è molto larga e piatta, può addirittura diventare difficile o impossibile inclinare la moto [2], come nell’esempio a destra della figura che segue:

 

le curve in moto
Figura 13  – Altezza del baricentro e velocità di rollio

 

1.4.3       Variazione della posizione laterale

Il baricentro della moto si trova di solito nel piano di mezzeria della stessa [3]. Il pilota invece può spostarsi lateralmente e quindi modificare la posizione del baricentro del sistema moto + pilota per variare l’inclinazione e modificare la traiettoria, come abbiamo visto nella Parte 1 di questo articolo.

 

1.5             Sospensioni

Le sospensioni sono studiate con cura in sede di progetto per assicurare il miglior compromesso tra tenuta di strada e confort in rapporto all’uso per il quale la moto è destinata.

Sull’argomento si potrebbero scrivere libri, qui di seguito ci limiteremo a vedere le nozioni più importanti ai fini del controllo della moto in curva.

I parametri importanti delle sospensioni sono:

 

  1. l’escursione – o corsa – cioè la distanza che le ruote percorrono tra la massima compressione e la massima estensione
  2. la rigidità, cioè la forza con cui resistono alla compressione.

Sospensioni morbide e a corsa lunga:

 

  • favoriscono l’assorbimento delle sconnessioni
  • evitano le perdite di aderenza delle ruote sullo sconnesso

Sospensioni rigide e a corsa corta:

 

  • riducono le oscillazioni e quindi l’inerzia delle masse sospese – cioè di tutto quello che sta sopra alle molle delle sospensioni: telaio, motore, persone, bagagli ecc.
  • diminuiscono la compressione delle sospensioni in piega dovuta alla forza centrifuga, massimizzando l’angolo di inclinazione possibile.

 

le curve in moto
Figura 17 – Compressione delle sospensioni in curva

 

1.5.1        Escursione

L’escursione delle sospensioni è decisa dal progettista e non può essere modificata dal pilota. In linea di massima, a moto ferma e pilota di peso standard a bordo, le sospensioni risultano compresse per circa un terzo della loro escursione, in modo da potersi comprimere per altri due terzi o estendersi per un terzo in base ai trasferimenti di carico e alle sconnessioni della strada. Piloti più leggeri o pesanti della media richiedono la regolazione del precarico delle molle (e in casi estremi la loro sostituzione con altre più adatte) per compensare la variazione di peso e mantenere l’assetto conforme al progetto, e un adattamento ancora maggiore è richiesto quando si trasportano passeggero e bagagli. Perciò è indispensabile regolare almeno la sospensione posteriore – quella che sopporta la maggior parte del carico aggiuntivo – ogni volta che si cambia configurazione.

Mantenere un precarico insufficiente peggiora notevolmente il comportamento della moto sotto vari i punti di vista:

 

  • peggiora nettamente l’assorbimento delle sconnessioni
  • lo sterzo diventa:
    • meno preciso
    • meno rapido
    • più pesante
  • diminuisce la luce a terra in curva.

Ciò vale anche per i corti di gamba che riducono il precarico della sospensione posteriore per abbassare l’altezza della sella: è un errore da evitare. Se non toccate terra sulla moto dei vostri sogni:

 

  • adottate una sella più bassa
  • se ciò non basta, acquistate la versione ribassata del modello, se disponibile
  • se tale versione non è disponibile, cambiate i vostri sogni.

 

1.5.2        Rigidità

La rigidità della sospensione dipende dalla molla, che può essere più o meno rigida, e dall’ammortizzatore, che può essere più o meno frenato. Contrariamente a quanto molti credono, la regolazione del precarico non ha alcuna influenza sulla rigidità della sospensione, anche se essa può influenzare in peggio la capacità di assorbire le sconnessioni, se il precarico è eccessivo o troppo basso, perché la sospensione raggiunge più facilmente il fondo corsa in estensione o in compressione.

Sulle sospensioni più economiche, la rigidità non è regolabile e molla ed ammortizzatore sono scelti in base all’uso per cui la moto è progettata. Salendo di livello diventano disponibili regolazioni della frenatura idraulica dell’ammortizzatore più o meno sofisticate e ampie, in modo da cucirsi addosso l’assetto su misura o, più di frequente, combinare disastri dovuti all’incompetenza.

Le moto più sofisticate offrono sospensioni a controllo elettronico che adattano il proprio comportamento alle condizioni del fondo stradale e in base alle scelte effettuate dal pilota durante la guida.

 

1.5.3        Sospensioni pro-dive e anti-dive

La forcella tradizionale è inclinata in modo tale che quando essa si comprime, l’asse della ruota arretra; per tale ragione, l’uso del freno anteriore la fa comprimere più di quanto sia necessario a causa del trasferimento di carico. In altre parole, la forcella ha un comportamento pro-dive, tanto maggiore, quanto maggiore è il suo angolo rispetto alla verticale.

 

Figura 18 – Arretramento del perno ruota su una forcella tradizionale

Le sospensioni anti-dive evitano questo effetto grazie alla propria geometria, che rende pressoché verticale il movimento del perno ruota durante la compressione. In questo modo la forza frenante applicata alla ruota non influisce sull’affondamento, che è dovuto soltanto al trasferimento di carico.

 

Figura 19 – Comportamento del perno ruota con la sospensione Telelever

I vantaggi di questo tipo di sospensione sono:

 

  1. una maggior capacità di assorbimento delle sconnessioni dovuta all’adozione di molle e ammortizzatori più morbidi rispetto a quelli necessari con le forcelle tradizionali
  2. un aumento del comfort dovuto all’assetto piatto in frenata
  3. una maggior stabilità in frenata, dovuta al mancato accorciamento dell’interasse
  4. una ridotta tendenza a bloccare la ruota anteriore in frenata, grazie al minor tempo necessario per ottenere il trasferimento di carico sull’anteriore.

Per contro, una sospensione anti-dive mantiene il baricentro della moto più alto in frenata rispetto a una tradizionale, ma il conseguente maggior rischio di ribaltamento è mitigato dal fatto che l’interasse non si accorcia.

Sospensioni di questo genere sono piuttosto rare ed equipaggiano soltanto alcuni modelli di gamma alta della BMW e la versione più recente della Honda Gold Wing.

 

le curve in moto
Figura 20 – Sospensione anteriore anti-dive della Honda Gold Wing 2018

 

1.6             Momento sterzante dovuto alla frenata anteriore

A moto inclinata, il punto di contatto di una ruota a terra si sposta verso l’interno della curva, mentre l’asse di sterzo giace sempre nel piano di simmetria della moto. Per tale ragione, una frenata anteriore genera un momento che tende a chiudere lo sterzo e quindi a sbilanciare la moto verso l’esterno, allargando la traiettoria.

 

le curve in moto
Figura 21 – Momento sterzante indotto dal freno anteriore

Questo effetto può variare molto, da quasi nullo a decisamente evidente, ed aumenta se la ruota anteriore è larga, se il battistrada ha un profilo turistico (non a V) o se esso è spiattellato (usurato al centro) dall’uso in autostrada, perché in tali casi aumenta lo spostamento del punto di contatto a moto inclinata e quindi il braccio di leva tra questo e l’asse di sterzo.

 

2       Gestire la traiettoria con la variazione della velocità

Abbiamo visto nella Parte I di questo articolo che lo sterzo e lo spostamento del corpo del pilota consentono di inclinare e quindi far deviare la moto in qualsiasi situazione della guida, sia in rettilineo che a curva già impostata.

Freni e gas non consentono di impostare una curva, in quanto a sterzo e moto dritti ogni loro effetto si esplica nel piano verticale di simmetria della moto [4], però a moto inclinata hanno effetti sulla sua traiettoria e quindi possono essere usati a tale scopo.

Le variazioni di velocità in curva influiscono sull’inerzia della moto, sui carichi gravanti sulle ruote, sulle derive degli pneumatici e sulla direzione dello sterzo, perciò l’analisi dei loro effetti sul comportamento della moto deve tenere conto contemporaneamente di tutti questi aspetti.

Inoltre, gli effetti prodotti variazioni nella direzione degli pneumatici sulla traiettoria della moto in curva sono più complessi da analizzare che sulle auto, in quanto bisogna tenere presente che:

 

  1. ogni variazione nella direzione delle ruote non genera solo una variazione della traiettoria, ma anche una variazione dell’inclinazione e questo, come abbiamo visto nel paragrafo 1.4 della Parte I, influenza a sua volta la traiettoria
  2. ciascuna manovra produce effetti contrastanti fra loro, perciò il risultato complessivo può andare in una direzione o in quella opposta, secondo quali effetti prevalgono
  3. finché non si raggiunge il limite di aderenza, la traiettoria della moto è determinata dalle sue variazioni di inclinazione conseguenti alle variazioni nella direzione delle ruote, mentre all’approssimarsi del limite di aderenza, gli pneumatici non riescono più a stringere la traiettoria, che quindi in questi casi è decisa dalle derive e dalla forza centrifuga.

Facciamo l’esempio di un aumento della deriva della ruota anteriore, che quindi punterà più verso l’esterno della curva:

 

  • finché c’è aderenza, ciò sbilancerà la moto verso l’interno e quindi essa stringerà la traiettoria
  • una volta raggiunto il limite, la moto non riuscirà a stringere la traiettoria, anzi, la allargherà, perché l’avantreno scivolerà verso l’esterno, e insistendo, perderà l’aderenza e la moto finirà in una caduta low-side (cioè con il pilota sul lato interno della curva).

Nei prossimi paragrafi vedremo che cosa accade nei diversi casi, tenendo sempre presente che quando una moto curva, essa è sempre soggetta agli effetti autoraddrizzanti descritti nel paragrafo 1.5. della Parte 1.

 

2.1             Accelerazione

L’accelerazione della ruota posteriore causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota posteriore
  2. induce un momento imbardante che tende a far stringere la traiettoria
  3. aumenta la forza centrifuga, con tendenza ad allargare la traiettoria
  4. induce un trasferimento di carico dalla ruota anteriore a quella posteriore, che determina:
    • l’estensione della forcella, con conseguente riduzione della maneggevolezza
    • l’aumento della deriva della ruota anteriore
    • la diminuzione della deriva della ruota posteriore
  5. la componente laterale della forza accelerante impressa alla ruota posteriore ne aumenta la deriva, in contrasto con quanto visto al punto precedente, tanto più, quanto maggiore è l’accelerazione.

L’effetto complessivo risultante sulla traiettoria dipende:

 

  • dalla forza dell’accelerazione
  • dalla posizione del baricentro
  • dall’avvicinamento al limite di aderenza.

 

  1. se l’accelerazione è lieve, lo sbilanciamento verso l’interno dovuto al gioco delle derive compensa il momento raddrizzante dovuto all’inerzia e la moto tende a mantenere la traiettoria impostata
  2. all’aumentare dell’accelerazione, l’effetto complessivo dipende dalla posizione del baricentro della moto:
    • con un baricentro alto, prevale l’effetto imbardante a stringere e la moto continua a mantenere la traiettoria impostata senza alcuna difficoltà
    • con un baricentro basso, l’effetto imbardante a stringere non prevale e la moto tende ad andare dritta
  3. se l’accelerazione è eccessiva, la ruota posteriore supera il proprio limite di aderenza e derapa verso l’esterno e:
    • se il pilota riesce a controsterzare e a modulare l’accelerazione, controlla la sbandata
    • se il pilota non riesce, la moto cade in low-side avvitandosi verso l’interno

 

  1. se il pilota chiude il gas, la ruota posteriore riacquista bruscamente aderenza a moto sbandata, sbilanciandola con violenza verso l’esterno (high-side).

 

2.2             Frenata anteriore

 

2.2.1        Effetti sull’assetto

La frenata della ruota anteriore causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota anteriore
  2. induce un momento imbardante che tende a far allargare la traiettoria
  3. riduce notevolmente la forza centrifuga, con tendenza a stringere la traiettoria
  4. induce un trasferimento di carico dalla ruota posteriore a quella anteriore, che determina:
    • la compressione della forcella, con conseguente aumento della maneggevolezza
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  5. la componente trasversale della forza frenante dovuta alla traiettoria curva aumenta la deriva della ruota anteriore, in contrasto con quanto visto al punto precedente, tanto più, quanto più forte è la frenata
  6. determina un ulteriore affondamento della sospensione anteriore, se questa è pro-dive (forcella normale)
  7. induce un momento sterzante a chiudere che tende a raddrizzare la moto, allargando la traiettoria

L’effetto complessivo risultante sulla traiettoria dipende:

 

  • dalla forza della frenata
  • dalle caratteristiche dello pneumatico anteriore
  • dalla posizione del baricentro
  • dall’avvicinamento al limite di aderenza

In pratica, i casi possibili sono i seguenti:

 

  1. se lo pneumatico anteriore è largo e/o il suo battistrada ha un profilo turistico e/o è spiattellato, il momento sterzante diventa particolarmente evidente e la moto tende ad allargare la traiettoria, tanto più quanto più forte è la frenata – si noti che questo effetto influisce solo sulla forza esercitata dal manubrio sulle mani e non anche sulla tenuta di strada, per cui basta contrastarlo per mantenere la traiettoria
  2. all’aumentare della frenata, aumenta il momento imbardante ad allargare la traiettoria, tanto più, quanto più il baricentro è alto
  3. se la frenata è eccessiva, la ruota anteriore supera il proprio limite di aderenza, lo sterzo si chiude e la moto cade in low-side.

Si noti che con il freno anteriore è impossibile causare una caduta high-side, cosa invece sempre possibile in caso di errore nell’uso del gas e del freno posteriore, ovviamente in assenza di aiuti elettronici.

 

2.2.2        Quando si usa

Se l’effetto di chiusura dello sterzo presente sulla moto è elevato, l’uso del freno anteriore da solo può diventare controproducente, perché la moto raddrizza la traiettoria in modo eccessivo.

Se invece tale effetto è ridotto, l’uso del freno anteriore consente decelerazioni notevoli in curva e quindi permette di stringere la traiettoria efficacemente, almeno finché non ci si avvicina al limite dell’aderenza, allorché gli effetti sottosterzanti prevalgono e la moto allarga con sempre maggior decisione la traiettoria.

 

2.3             Frenata posteriore

 

2.3.1        Effetti sull’assetto

La frenata della ruota posteriore è molto più blanda di quella anteriore e quindi influisce assai meno sull’assetto. Tenendo presente tale premessa, essa causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile alla ruota posteriore
  2. riduce sensibilmente la forza centrifuga, aumentando la tendenza a stringere la traiettoria
  3. induce un momento imbardante che tende a far allargare la traiettoria – più lieve di quello indotto dalla frenata anteriore, vista la traiettoria più stretta percorsa dalla ruota posteriore
  4. induce un trasferimento di carico dalla ruota posteriore a quella anteriore – più lieve di quello indotto dalla frenata anteriore, vista la minor decelerazione possibile – che determina:
    • una compressione della forcella trascurabile, perché essa è tirata indietro dal freno posteriore anziché essere compressa dall’effetto pro-dive indotto dalla frenata anteriore
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  5. la componente trasversale della forza frenante dovuta alla traiettoria curva – più lieve di quella generata dalla frenata anteriore, vista la minor decelerazione possibile – aumenta ulteriormente la deriva della ruota posteriore, tanto più, quanto più forte è la frenata.

L’effetto complessivo risultante sulla traiettoria è che la moto:

 

  1. tende in qualsiasi circostanza a mantenere la traiettoria impostata
  2. se la frenata è eccessiva, la ruota posteriore supera il proprio limite di aderenza, derapa verso l’esterno e:
    • se il pilota è bravo a controsterzare e a modulare la frenata, controlla la sbandata
    • se il pilota tiene il freno premuto, la moto cade in low-side avvitandosi verso l’interno
    • se il pilota molla il freno posteriore di scatto, la ruota posteriore riacquista bruscamente aderenza a moto sbandata, sbilanciandola con violenza verso l’esterno (caduta high-side).

 

2.3.2        Quando si usa

Il freno posteriore consente decelerazioni più blande rispetto a quello anteriore, ma non genera effetti negativi sulla traiettoria – almeno finché non si supera il limite di aderenza – né sullo sterzo né sulla compressione della forcella. Quindi esso è un ottimo strumento per correzioni di entità limitata, come:

 

  • stringere la traiettoria in caso di curva presa un po’ troppo velocemente
  • adattare la traiettoria nelle curve a stringere
  • non allargare la traiettoria nelle curve in discesa.

 

2.3.3        Freno posteriore o chiusura del gas?

Gli effetti dinamici prodotti dai due comandi sono gli stessi, ma il freno è più semplice e preciso da usare rispetto alla chiusura del gas, perché:

 

  • ha un comportamento costante e prevedibile, mentre l’effetto di una chiusura del gas varia moltissimo in base al rapporto inserito, al regime e al tipo di motore
  • consente di rallentare senza chiudere il gas, evitando ogni effetto on-off.

 

2.4             Frenata integrale

 

2.4.1        Effetti sull’assetto

La frenata integrale causa i seguenti effetti sull’assetto della moto:

 

  1. sottrae aderenza disponibile ad entrambe le ruote, ma in misura minore su ciascuna di esse a parità di decelerazione rispetto alla frenata su una sola ruota
  2. riduce notevolmente la forza centrifuga, aumentando la tendenza a stringere la traiettoria
  3. induce un momento imbardante che tende a far allargare la traiettoria, ma in misura minore rispetto alla sola frenata anteriore a parità di decelerazione, perché la ruota posteriore percorre una traiettoria più stretta rispetto a quella anteriore
  4. rispetto alla frenata anteriore determina un momento sterzante nettamente ridotto, perché a parità di decelerazione la frenata anteriore ha un effetto minore sulla sterzata, mentre la frenata posteriore fa decelerare anche l’asse di sterzo, riducendo l’effetto
  5. induce un trasferimento di carico dalla ruota posteriore a quella anteriore, che determina:
    • la compressione della forcella minore che nel caso della sola frenata anteriore
    • la diminuzione della deriva della ruota anteriore
    • l’aumento della deriva della ruota posteriore
  6. la componente trasversale della forza frenante dovuta alla traiettoria curva aumenta la deriva di entrambe le ruote e in particolare di quella anteriore
  7. nel complesso, gli effetti sulle derive non influiscono sensibilmente sulla traiettoria.

L’effetto complessivo risultante sulla traiettoria è che la moto:

 

  1. tende in qualsiasi circostanza a mantenere la traiettoria impostata
  2. se la frenata è eccessiva – cosa piuttosto difficile, visto che la decelerazione ottenibile prima di superare il limite di aderenza è piuttosto elevata – tende a partire per la tangente sulle due ruote e quindi consente il recupero semplicemente riducendo la frenata.

 

2.4.2        Quando si usa

L’uso combinato dei due freni in curva è sempre possibile ed è nel complesso assai più efficace rispetto agli altri modi di frenare, perché:

 

  • presenta in misura assai minore l’effetto negativo sulla sterzata possibile con sola la frenata anteriore
  • consente decelerazioni assai maggiori senza mettere in crisi l’aderenza rispetto alla sola frenata posteriore
  • riduce l’affondamento della sospensione anteriore, migliorando la frenata sullo sconnesso e rendendo la guida più comoda, specialmente per il passeggero.

Ecco perché alcune moto sono equipaggiate con sistemi di frenata integrale.

l’unico caso in cui può convenire usare il solo freno anteriore è l’ingresso in curva nella guida sportiva, perché la maggior compressione della forcella aumenta la rapidità di ingresso in curva, a patto che la moto non soffra di un eccessivo momento raddrizzante dello sterzo.

 


[1] Se la strada è pianeggiante. Sui dossi il peso totale diminuirebbe e sulle cunette aumenterebbe.

[2] Questo fatto si verifica normalmente sui dragster, che hanno baricentro bassissimo e gomma posteriore molto larga e squadrata.

[3] Una eccezione famosa è costituita dalle Vespa con cambio meccanico, sempre sbilanciate a sinistra per compensare il peso del motore posto a destra della ruota posteriore.

[4] Fanno eccezione alcune moto con albero motore longitudinale, come le vecchie BMW con motore boxer e le Moto Guzzi, dove le variazioni di regime del motore influiscono sensibilmente sull’inclinazione della moto.

 

[/vc_column_text][/vc_column][/vc_row]

Come si fanno le curve in moto – Parte 1

La parte I di quest’articolo, pubblicata originariamente il 17 luglio 2021, è stata modificata il 10 luglio 2022 e nuovamente rielaborata tra il 17 e il 19 luglio dello stesso anno. Tra queste date ho acquisito maggior consapevolezza di alcuni aspetti della dinamica della moto, che mi hanno permesso di rendere più chiara, semplice e precisa sua la descrizione e di eliminare alcuni errori che avevo commesso nell’interpretare certi fenomeni.

Ringrazio Federico Canegiallo (https://www.giornalemotori.com/) per tutte le spiegazioni che ha avuto la pazienza di darmi e spero che questo mio scritto sia ora inattaccabile ai suoi occhi. 🙂

Premessa

Questo articolo ha lo scopo di descrivere il comportamento della moto in curva su strada e i modi che abbiamo per modificarlo. È più approfondito del solito e quindi è molto lungo. Per renderlo più digeribile, l’ho diviso in due parti:

Parte 1 – Sterzata e spostamento laterale del corpo

Parte 2 – Variazioni di velocità in curva

Ogni parte inizia con un capitolo in cui sono trattate le nozioni di dinamica della moto necessarie per comprendere i comportamenti descritti nel seguito. L’argomento non è trattato da un punto di vista matematico, ma solo qualitativo, perciò è comprensibile da chiunque, purché abbia tempo e voglia di leggere e capire.

Ho deciso di descrivere come si fanno le curve in moto, perché il web è pieno di articoli e di video su questo argomento, ma che in gran parte contengono errori. I peggiori poi sono vere e proprie schifezze, in cui si raccontano frescacce del tutto prive di senso, magari da gente che non sa assolutamente niente di dinamica della moto e lo ammette anche pubblicamente, con frasi tipo “io non ho la più pallida idea del perché avvenga questo, ma è così, prendetelo come un dogma”.

Leggendo i commenti a tali video, si trovano persone che li criticano, ma anche tante altre che ringraziano l’autore per avergli chiarito i loro dubbi… Questi motociclisti meritano di più, sono appassionati in cerca di risposte alle proprie domande e portarli fuori strada con spiegazioni senza senso è il peggior servizio che si possa rendere alla loro passione e alla loro sicurezza. Quest’articolo è anche per loro, o almeno per quelli tra loro che vorranno leggerlo e capirlo fino in fondo.

Sterzata e spostamento laterale del corpo

1       Equilibrio dei veicoli a due ruote

1.1       I primi tentativi

Per quasi tutta la sua lunghissima storia, l’umanità non ha mai neanche immaginato la possibilità di muoversi su veicoli a due ruote. Quest’idea cominciò a formarsi solo a cavallo tra il XVIII e il XIX secolo, in piena Rivoluzione industriale, quando le invenzioni in tutti i campi cominciarono a susseguirsi a ritmo sempre più vertiginoso.

Durante i primi tentativi ci si accorse subito che questi mezzi non erano intrinsecamente stabili e richiedevano doti non comuni alla guida, perciò fu subito chiaro che, se si voleva favorirne la diffusione, era necessario fare in modo che potessero rimanere in equilibrio il più possibile automaticamente, cioè senza intervento del pilota. Non a caso la prima bicicletta prodotta su larga scala, la “Rover” del 1885, aveva questa caratteristica – e tante altre – ripresa in tutte le biciclette successive e poi in tutte le moto fino ai nostri giorni.

Nei prossimi paragrafi vedremo come fanno i veicoli a due ruote allineate a stare in equilibrio automaticamente, cioè a essere autostabili.

1.2       Bilanciamento tra forza peso e forza centrifuga

Per mantenersi in equilibrio, un veicolo a due ruote deve sterzare nella direzione verso cui eventualmente è inclinato, in modo che la forza centrifuga [1] risultante lo spinga verso l’esterno della curva e compensi così la sua forza peso, che invece lo fa cadere verso l’interno. Se queste due forze sono in equilibrio, il veicolo mantiene costante il proprio assetto, altrimenti esso varia la propria inclinazione. In particolare:

  1. se la sterzata è eccessiva, il veicolo tenderà a raddrizzarsi, per poi inclinarsi dalla parte opposta
  2. se la sterzata è insufficiente, il veicolo tenderà a inclinarsi sempre di più.
Figura 1 – Forza centrifuga e forza peso

Se si ragiona un pò su quanto detto sopra, appare chiaro che, per rendere autostabile un veicolo del genere, sono necessarie due cose:

  • quando il veicolo si inclina da un lato, la ruota anteriore deve sterzare automaticamente e progressivamente dalla parte dell’inclinazione, ma un po’ troppo, in modo da generare un po’ di più della forza centrifuga strettamente necessaria per bilanciare la forza peso e così riportare automaticamente il veicolo in posizione verticale
  • man mano che il veicolo ritorna in posizione verticale, la ruota anteriore deve ritornare automaticamente e progressivamente nella posizione centrale, per evitare che il veicolo si inclini nella direzione opposta.

Il comportamento dello sterzo è dunque la chiave di tutto; se si riesce a farlo funzionare in questo modo, è fatta.

1.3       Fenomeni giroscopici

Le ruote della moto sono giroscopi, in quanto ruotano intorno a un asse di rotazione – il mozzo – sono simmetriche rispetto ad esso e hanno un’elevata inerzia, dovuta al loro diametro e al fatto che buona parte della propria massa è concentrata lungo la circonferenza – il cerchione e lo pneumatico. Come tali, esse sono soggette a fenomeni giroscopici di vario tipo, che hanno un ruolo fondamentale nella dinamica dei veicoli a due ruote. Nel seguito sono descritti i due fenomeni che ci interessano maggiormente.

a. Effetto giroscopico in fase di inclinazione del veicolo

Quando un veicolo a due ruote allineate si inclina, la sua ruota anteriore sterza automaticamente dalla parte dell’inclinazione [2].

Per esempio, durante un’inclinazione a sinistra, la massa del punto più alto della ruota – che è quello che durante l’inclinazione si muove più velocemente – sarà spinta verso sinistra dall’inclinazione crescente, perciò acquisirà una traiettoria diagonale diretta verso sinistra (frecce rosse) e tenderà a proseguire per inerzia lungo tale traiettoria. Essa però sarà costretta a seguire la circonferenza e quindi a rientrare verso destra, perciò tirerà la ruota a sterzare verso sinistra.

Figura 2 – Inclinazione della ruota e precessione giroscopica

Questo fenomeno può essere simulato facilmente con una ruota di bicicletta tenuta in rotazione fra le mani.

VIdeo 1 – Effetto dell’inclinazione su un giroscopio

b. Effetto giroscopico durante una curva a inclinazione costante

Durante la percorrenza della curva, quando il veicolo a due ruote ha raggiunto e mantiene un angolo di inclinazione costante, il fenomeno giroscopico descritto al precedente punto a, proprio di una ruota che si sta inclinando, cessa di manifestarsi. In assenza di altri effetti, la ruota a questo punto dovrebbe smettere di sterzare e quindi, per inerzia giroscopica, dovrebbe mantenere costante la direzione del proprio asse e proseguire dritta. Dato che, invece, continua a curvare, c’è qualcos’altro che ne determina il comportamento. La ragione di ciò sta nel fatto che, una volta che la moto sta curvando con un’inclinazione costante, la ruota anteriore non assume una traiettoria rettilinea uniforme, ma è inclinata e contemporaneamente sta traslando lateralmente per seguire la traiettoria curva. Per tale ragione si verifica quanto segue.

  1. La massa del punto superiore della ruota – quello più interno alla curva – durante il movimento roto-traslatorio della ruota stessa è costretto a seguire la circonferenza verso l’esterno e quindi a subire una forza centrifuga minore rispetto a quella della moto, ma per inerzia vorrebbe muoversi insieme a questa e quindi tira la parte anteriore della ruota verso l’interno della curva.
  2. Simmetricamente, La massa del punto inferiore della ruota – quello più esterno alla curva – durante il movimento roto-traslatorio della ruota stessa è costretto a seguire la circonferenza verso l’interno e quindi a subire una forza centrifuga maggiore rispetto a quella della moto, ma per inerzia vorrebbe muoversi insieme a questa e quindi tira la parte posteriore della ruota verso l’esterno della curva.
Figura 3 – Effetto giroscopico durante una sterzata a inclinazione costante

Il risultato di questo fenomeno è che la ruota anteriore di un veicolo a due ruote continua a sterzare verso la curva anche quando l’inclinazione dello stesso rimane costante.

SI noti che, a differenza del precedente, questo fenomeno non può essere simulato in modo efficace tenendo in mano una ruota di bicicletta mentre si sta in piedi, perche in questo modo viene sostanzialmente a mancare la traslazione della ruota verso l’interno della curva.

c. Effetto complessivo dei due fenomeni giroscopici

Nel complesso, i due fenomeni giroscopici a. e b. descritti sopra consentono alla moto di curvare quando si inclina, di mantenere sterzata la ruota anteriore durante la curva e di riportare lo sterzo verso il centro quando la moto si raddrizza. Ma allora, visto che la ruota anteriore si comporta proprio come dovrebbe, perché i primi bicicli avevano problemi di equilibrio? Perché tali effetti si manifestano in modo eccessivamente brusco, se lo sterzo non è dotato di un’adeguata avancorsa.

1.4       Avancorsa

L’avancorsa è la distanza tra il punto in cui l’asse di rotazione dello sterzo interseca il piano su cui poggia la moto e il centro dell’impronta a terra dello pneumatico anteriore. Si dice:

  • avancorsa positiva quando l’asse di sterzo cade davanti al punto di appoggio della ruota anteriore
  • avancorsa negativa quando cade dietro di esso
  • avancorsa nulla quando i due punti coincidono.
Figura 4 – Avancorsa positiva

Tutti i veicoli a due ruote moderni sono caratterizzati da un’avancorsa positiva. Infatti, essa offre due vantaggi fondamentali, che senza i quali nessun veicolo a due ruote allineate potrebbe essere autostabile.

  1. Un’avancorsa positiva rende lo sterzo più pesante da azionare, specialmente al crescere della velocità, e quindi impedisce al pilota di agire troppo bruscamente su di esso e mettere in grave rischio la stabilità. Ciò avviene, perché azionando lo sterzo, l’avantreno della moto trasla lateralmente in direzione della sterzata (si veda la successiva figura 5), opponendosi a questa con la propria inerzia. In tal modo, l’avancorsa:
    • in rettilineo, contribuisce a mantenere la ruota anteriore allineata al centro
    • all’inclinarsi della moto, limita la sterzata automatica della ruota indotta dagli effetti giroscopici descritti sopra.
  2. Quando un veicolo si inclina e la sua ruota anteriore sterza nella direzione della curva, per una semplice ragione geometrica il punto di contatto di tale ruota con il suolo si sposta in avanti. In assenza di un’adeguata avancorsa, al crescere dell’angolo di inclinazione si viene a creare un’avancorsa negativa e ciò determina l’immediata sterzata a battuta della ruota verso l’interno. Per farsi un’idea del fenomeno, basti dire che ciò è quanto avviene sui veicoli a due ruote moderni quando si tenta di salire obliquamente su un gradino.
Figura 5 – Traslazione dell’asse di sterzo e dell’avantreno a ruota sterzata

Sulle moto moderne l’avancorsa si aggira di solito intorno ai 100 mm e varia in base alle caratteristiche di ciascun modello e all’uso a cui è destinato. Come si può vedere dalla figura 3 sopra, essa dipende:

  1. dall’offset, che è la distanza tra l’asse di sterzo e il piano ad esso parallelo e passante per l’asse della ruota anteriore
  2. dall’angolo di inclinazione dell’asse di sterzo.

Combinando opportunamente questi parametri, è possibile ottenere l’avancorsa desiderata con una grande varietà di angoli di inclinazione dell’asse di sterzo, dalla BMW R75/5 di Tony Foale con sterzo verticale ai chopper con sterzo quasi orizzontale.

Figura 6 – BMW R75/5 di Tony Foale con asse di sterzo verticale
Figura 7 – Chopper

I primi bicicli stavano in equilibrio precario, appunto perché avevano sterzo quasi verticale e privo di offset e quindi avevano avancorsa prossima allo zero.

FIgura 8 – Biciclo di Michaux (1860 circa)

Il comportamento autosterzante della moto è influenzato da parecchie caratteristiche, tra cui le seguenti:

  • avancorsa (aumentandola, diminuisce la tendenza della ruota a sterzare)
  • peso della ruota anteriore, dischi inclusi (aumentandolo, aumenta la tendenza della ruota a sterzare)
  • diametro della ruota anteriore (idem)
  • inclinazione dell’asse di sterzo rispetto alla verticale, a parità di avancorsa (aumentandola, diminuisce la tendenza della ruota a sterzare)
  • peso gravante sulla ruota anteriore (aumentandolo, diminuisce la tendenza della ruota a sterzare)
  • peso delle masse poste alle estremità del manubrio (idem).

È chiaro che qualsiasi modifica apportata a questi elementi senza cognizione di causa può variare notevolmente il comportamento della moto e in casi estremi può persino renderla incontrollabile.

È infine importante notare che il comportamento autosterzante di un veicolo a due ruote si basa sul fatto che le ruote abbiano sufficiente aderenza per non derapare. Una sbandata della moto dovuta a perdita di aderenza comporta la rottura dell’equilibrio automatico, può richiedere correzioni attive da parte del pilota e può portare anche alla caduta della moto.

2       Gestire la traiettoria con lo sterzo

2.1             Come funziona

Quando siete al volante di un’auto e sterzate da una parte, gli pneumatici generano a livello dell’asfalto una forza centripeta, che tende cioè a spostarle lateralmente nella direzione della sterzata, mentre il baricentro dell’auto, che è situato più in alto, tende ad andare dritto per inerzia. La combinazione di queste due forze genera un momento che fa inclinare l’auto in direzione opposta rispetto alla sterzata.

Figura 9 – Sterzata e rollio

Questo effetto si verifica su qualsiasi veicolo che poggia su ruote e quindi anche sulle moto: se si sterza da una parte, la moto si inclina dall’altra. Una volta che la moto si inclina dalla parte “sbagliata”, per le ragioni viste nel paragrafo 1, la ruota anteriore sterza nella stessa direzione e la moto inizia a percorrere la curva.

Video 2 – Fasi del push-steering

Si noti che queste fasi si susseguono automaticamente con grande rapidità e, a parte l’impulso iniziale 1, senza alcun intervento del pilota. Non è affatto vero che per inserirsi in curva si debba sterzare prima da una parte e poi dall’altra: bisogna continure a premere sempre nella stessa direzione, poi la precessione giroscopica e l’avancorsa fanno tutto il resto [4].

Ora, se per curvare dovessimo pensare di dover sterzare al contrario, diventeremmo pazzi. Perciò conviene vedere la cosa in modo più intuitivo: per inclinare la moto in una direzione, basta premere in avanti la manopola da quel lato, e più forte sarà la pressione, più la moto si inclinerà e più curverà stretta. Ecco perché questa tecnica è chiamata in inglese push-steering, che vuol dire appunto “sterzata mediante spinta”[3].

Da quanto detto nel paragrafo 1, ricordiamo che un’avancorsa ben dimensionata fa sì che la precessione giroscopica faccia sterzare la ruota nella direzione dell’inclinazione di quel tanto che basta, da rendere la forza centrifuga lievemente eccedente rispetto alla forza peso, in modo da autostabilizzare la moto. Per tale ragione, se si vuole continuare a curvare, occorre continuare a premere sulla manopola interna, altrimenti la moto ritorna in posizione verticale e riprende la marcia rettilinea.

Il push-steering funziona sia a moto dritta che a moto inclinata, quindi esso consente sia di iniziare una curva, sia di variare l’inclinazione e quindi la traiettoria della moto durante una curva. In ogni caso, basta semplicemente:

  • premere su una manopola, per iniziare a curvare nella direzione dove si preme
  • premere maggiormente sulla manopola interna, per stringere la traiettoria
  • smettere di premere sulla manopola interna, per allargare la traiettoria.

Il video seguente illustra il funzionamento su strada di questa tecnica. Per chiarezza, le mani sono tenute aperte, senza impugnare le manopole, in modo da rendere visivamente chiaro che esse spingono.

Video 3 – Attivazione del push steering alla guida

Sperimentare l’efficacia del push-steering alla guida è piuttosto semplice. Lungo un rettilineo, piazzatevi a una velocità media – 60-70 km/h va benissimo – togliete la mano sinistra dal manubrio e con la destra spingete la manopola in avanti – cioè sterzate verso sinistra; vi accorgerete che la moto curverà subito verso destra.

Il push-steering non funziona alle bassissime velocità, allorché lo sterzo va azionato dalla parte giusta. Perché? Come abbiamo visto sopra, la sospensione anteriore delle moto è caratterizzata dalla presenza dell’avancorsa, a causa della quale la ruota poggia a terra più indietro rispetto all’asse dello sterzo. Per questa ragione, se si sterza a moto ferma o quasi, l’asse dello sterzo si sposta dalla parte della sterzata e con esso tutta la parte anteriore della moto. In questo modo la moto si sbilancia leggermente dalla parte della sterzata e quindi tende a cadere nella direzione della curva, di quel tanto che basta a vincere la ridottissima forza centrifuga.

Figura 10 – Effetto di una sterzata sul baricentro

Quando invece la velocità supera una certa soglia limite – intorno ai 15-20 km/h, dipende principalmente dalla misura dell’avancorsa – la forza centrifuga prevale su questo effetto e il push-steering inizia a funzionare.

2.2             Pregi

Il push-steering:

  • funziona sia a moto dritta che a moto inclinata
  • è molto preciso
  • consente di impostare qualsiasi traiettoria
  • è efficace con qualsiasi tipo di moto, anche quelle più pesanti
  • è rapido, anche se non istantaneo, per via della sterzata iniziale in senso contrario necessaria alle velocità normali, specialmente in sella a una moto pesante, perché la durata e l’ampiezza della fase iniziale negativa aumentano con l’aumentare della massa.

2.3             Difetti

Di suo, il push-steering non ha difetti. Esso però ha dei limiti nella guida veloce, che vengono superati combinando questa tecnica con lo spostamento del baricentro del pilota, come spiegato più avanti.

2.4             Quando si usa

Grazie a tali caratteristiche, la tecnica del push-steering è efficace per:

  • impostare e percorrere qualsiasi traiettoria con grande precisione
  • variare anche notevolmente una traiettoria a curva già impostata
  • schivare un ostacolo improvviso, anche di grandi dimensioni.

Insomma, è una tecnica buona per tutti gli usi. Non a caso è usata da tutti i motociclisti, anche quelli – la maggioranza – che non ne sono consapevoli. Alcuni di questi sono addirittura convinti di azionare lo sterzo dalla parte della curva, il che è semplicemente impossibile.

Ma anche se tutti usano il push-steering, esserne coscienti comporta due grandi vantaggi:

  1. consente di manovrare più efficacemente qualsiasi moto e in particolare quelle più pesanti
  2. consente di schivare molto più efficacemente gli ostacoli.

Chi invece non ne è cosciente, faticherà di più a controllare la moto e, soprattutto, reagirà al pericolo in modo meno efficace o addirittura controproducente. Ho visto con i miei occhi – e in un caso ero passeggero – motociclisti che, per evitare un ostacolo, gli finivano addosso nel tentativo di sterzare dalla parte opposta.

Ecco perché è fondamentale che tutti i motociclisti prendano coscienza del push-steering e imparino a sfruttarne le potenzialità.

3       Gestire la traiettoria con lo spostamento laterale del corpo del pilota

3.1             Come funziona

Se il pilota sposta il proprio baricentro lateralmente rispetto alla moto, contrariamente a quanto molti credono (me per primo, per lungo tempo), la moto non si inclina dalla parte verso cui il pilota si sporge, bensì nella direzione opposta. Ciò avviene per il principio di conservazione della quantità di moto, per il quale, in assenza di forze esterne al sistema moto + pilota, il baricentro del sistema stesso continua a muoversi per inerzia nella stessa direzione. Il pilota fa parte del sistema, per cui quando egli sposta il proprio baricentro da un lato, necessariamente il baricentro della moto si sposta dall’altro. Naturalmente, il tutto è influenzato dal rapporto tra il peso della moto e quello del pilota: più la moto è pesante rispetto al pilota, meno essa si inclinerà allo spostarsi di questo.

Come sappiamo, la precessione giroscopica, tenuta a bada dall’avancorsa, fa sterzare la ruota nella direzione dell’inclinazione della moto. Anche in questo caso, quindi, esattamente come nel caso del push-steering, la ruota sterza in direzione contraria a quella verso cui si vuole andare e perciò si realizza la stessa sequenza:

  1. la moto viene inclinata dalla parte sbagliata
  2. la ruota anteriore sterza dalla parte sbagliata
  3. la moto si sbilancia nella direzione giusta, cioè quella del busto
  4. la ruota anteriore per precessione giroscopica sterza nella stessa direzione
  5. la moto curva nella direzione voluta.

Da quanto detto nel paragrafo 1, ricordiamo che un’avancorsa ben dimensionata fa sì che la precessione giroscopica faccia sterzare la ruota nella direzione dell’inclinazione abbastanza, da rendere la forza centrifuga lievemente eccedente rispetto alla forza peso, in modo da autostabilizzare la moto. Per continuare a curvare, occorre quindi continuare a sporgersi verso l’interno per mantenere la moto più sollevata e quindi diminuire leggermente la sterzata della ruota anteriore.

Alcuni definiscono questa tecnica “premere sulle pedane”, ma è una denominazione impropria, perché se si fa solo questo, senza spostare il busto, non succede assolutamente nulla. Spostando il busto e scaricando il peso sulla pedana si ottiene un maggior spostamento del pilota, un maggior spostamento in senso opposto del baricentro della moto e quindi una maggior efficacia della manovra.

Molti motociclisti affermano di curvare in questo modo, ma in realtà non spostano il corpo in maniera significativa e curvano con il push-steering. Ma anche quelli che effettivamente spostano il corpo, senza volerlo applicano quasi sempre anche forze longitudinali sulle manopole e quindi combinano lo spostamento del proprio baricentro con il push-steering. L’unico modo per curvare con questa tecnica “in purezza” consiste nel metterla in pratica senza le mani sul manubrio. Se ci provate – lungo un tratto senza traffico in discesa o inserendo il cruise control – scoprirete quanto effettivamente la vostra traiettoria nella guida di tutti i giorni è dovuta al modo in cui spostate il vostro baricentro e quanto invece alla vostra azione sullo sterzo. Se pensavate che tutto il merito andasse al vostro tuffarvi con il corpo nelle curve, rimarrete profondamente delusi.

Il video che segue illustra il funzionamento di questa tecnica, senza mani, per verificarne la reale efficacia.

Video 4 – Spostamento laterale del corpo

3.3.2        Pregi

Questa tecnica, nell’ipotesi che sia usata da sola, cioè senza combinarla col push-steering:

  • funziona sia a moto dritta che a moto inclinata
  • consente ampi cambiamenti di direzione
  • funziona anche senza mani.

3.3.3        Difetti

Questa tecnica:

  • è più lenta e meno precisa del push-steering, specialmente nella guida veloce e nelle curve strette
  • è assai meno efficace sulle moto pesanti, dove il peso del pilota perde importanza rispetto al peso totale.

3.3.4        Quando si usa

Al di fuori del caso della guida senza mani, lo spostamento del peso è in realtà sempre abbinato all’uso dello sterzo e il bello è che lo migliora in qualsiasi circostanza, perché:

  • aiuta a mantenere l’equilibrio nelle manovre a bassissima velocità
  • rende più rapida la sterzata, specialmente su moto dallo sterzo pesante, perché
  • minimizza il rischio di grattare qualche cosa a terra nella guida veloce, perché consente una minor inclinazione della moto a parità di velocità e di raggio della traiettoria
  • dona piacevolezza alla guida, in quanto il pilota percepisce che la moto mantiene la traiettoria curva senza dover agire sullo sterzo.
Figura 11 – Minor inclinazione della moto con lo spostamento del corpo

Insomma, l’accoppiata push-steering + spostamento del peso è vantaggiosa in tutte le circostanze della guida e specialmente nella guida veloce..

[1] In realtà la forza centrifuga è solo una forza apparente (https://it.wikipedia.org/wiki/Forza_centrifuga), ma è un concetto comodo da usare.

[2] L’effetto si manifesta anche sulla ruota posteriore, che però non ha la libertà di sterzare e scarica tale tendenza sul forcellone.

[3] Per definire il push-steering si usa spesso il termine “controsterzo”, che in realtà è la manovra con cui si recupera una sbandata del retrotreno con una sterzata in senso contrario rispetto alla curva. Nel nostro caso non c’è alcuna sbandata da recuperare, per cui il termine è improprio.

[4] Qui cade in errore perfino l’Ing. Vittore Cossalter, secondo il quale il pilota prima sterza in senso contrario e poi, una volta che la moto si inclina dalla parte giusta, gira lentamente lo sterzo nella direzione della curva (Motorcycle Dynamics edizione italiana, seconda edizione 2014, par. 8.5 e 8.6 pag. 301 e 303).

Avancorsa e angolo di inclinazione dello sterzo

Nel provare le nuove BMW F900R e F900XR mi sono imbattuto in un fatto curioso nella relativa cartella stampa, riguardante la geometria della sospensione anteriore. Perché quindi non cogliere l’occasione per parlare un po’ di questo argomento?

Gli elementi fondamentali di tale geometria sono l’angolo di inclinazione dell’asse di sterzo rispetto alla verticale e l’avancorsa. Entrambi influiscono sostanzialmente sul comportamento della moto e non a caso sono presenti in tutte le schede tecniche dei modelli in commercio.

Ma che cosa sono esattamente, e che effetto hanno sulla guida?

L’angolo di sterzo è l’angolo tra l’asse intorno a cui ruota lo sterzo e la verticale .

L’avancorsa invece è la distanza tra il punto in cui l’asse dello sterzo interseca il piano su cui poggia la moto e il centro dell’impronta a terra dello pneumatico anteriore (che, quando la moto poggia su un piano, coincide con la verticale sullo stesso piano del centro del mozzo della ruota anteriore).

La figura seguente dovrebbe chiarire il tutto.

L’angolo di sterzo determina principalmente la prontezza della sterzata, cioè la velocità con cui la ruota sterza a parità di velocità di rotazione del manubrio: più l’angolo è stretto, e quindi più lo sterzo è verticale, e più la ruota sterza rapidamente.

L’avancorsa invece ha effetto principalmente sulla durezza dello sterzo: più essa è lunga e più lo sterzo oppone resistenza alla sterzata. A parità di altre condizioni, un’avancorsa lunga determina quindi uno sterzo più pesante, ma un comportamento più stabile della moto, mentre un’avancorsa corta aumenta la maneggevolezza a scapito della stabilità.

L’angolo di sterzo è scelto dai progettisti in funzione del carattere della moto e dalla velocità massima raggiungibile; più il carattere è sportivo e più l’angolo di sterzo tende a essere chiuso.

L’avancorsa è scelta in base a una logica un po’ diversa, perché di solito cresce con la velocità e diminuisce quando si vuole dare maggior leggerezza allo sterzo.

Avancorsa e angolo di sterzo sono correlati tra loro. Infatti, guardando la figura precedente, appare chiaro che se aumentiamo l’angolo di sterzo, a parità di altre condizioni otteniamo un’avancorsa più lunga. Ma in realtà essi possono essere variati a piacimento uno rispetto all’altro.

Se ci fate caso, su nessuna moto l’asse di sterzo si trova esattamente all’altezza degli steli della forcella; esso è sempre un po’ arretrato rispetto ad essi e ciò appare evidente osservando qualunque piastra di sterzo.

La misura di tale arretramento si chiama offset, e come si può intuire osservando l’immagine seguente, più esso aumenta, a parità di angolo di sterzo, e più l’avancorsa si accorcia.

Quindi, variando l’offset è possibile variare a piacimento la relazione tra avancorsa e angolo di sterzo. In questo modo è possibile, per esempio, ottenere un’avancorsa di dimensione normale pur in presenza di un angolo di sterzo molto aperto e ciò rende possibile costruire chopper tutto sommato guidabili (anche se con una prontezza di sterzo ridicolmente bassa).

La tabella seguente offre spunti interessanti al riguardo.

Modello Angolo di sterzo dalla verticale ° Avancorsa mm
BMW S1000RR 23,1 93,9
MV Agusta F3 24,0 99,0
Ducati Monster 24,0 93,0
Ducati Panigale V4 24,5 100,0
Ducati Multistrada V4 24,5 102,5
BMW R1250GS Adventure 24,9 95,4
BMW S1000XR 25,5 116,0
Honda CB650F 25,5 101,0
BMW R1250GS 25,7 100,6
BMW F800R 26,0 100,0
Harley-Davidson Ultra Limited 26,0 170,0
BMW F750GS 27,0 104,5
BMW F850GS 28,0 126,0
Honda GL 1800 Gold Wing 29,25 109,0
Harley-Davidson Iron 883 30° 117,0

Si notino in particolare le quote più sportive della BMW R1250GS Adventure rispetto alla versione Standard, che servono a compensare il maggior peso sull’avantreno. Ecco perché chi guida un’Adventure si stupisce per la sua maneggevolezza.

Torniamo ora alla cartella stampa delle BMW F900R e XR. Prima di andare a provare le moto, da buon secchione me la sono letta tutta, ma ho fatto un salto sulla sedia quando ho visto che l’angolo di sterzo su entrambi i modelli dovrebbe essere pari a 29,5° (la Casa bavarese curiosamente dichiara sempre l’angolo rispetto all’orizzontale, in questo caso 60,5°).

Dalla tabella precedente appare evidente che si tratterebbe di una scelta davvero bizzarra, perché un angolo così aperto è adatto a una cruiser, non certo a moto dalle velleità sportiveggianti come queste.

Ho dato quindi un’occhiata alle foto, e la cosa proprio non mi quadra: sulle F l’angolo di sterzo appare piuttosto chiuso, assai più simile a quello di una supersport che a quello di una cruiser.

Nella figura che segue ho sovrapposto in trasparenza la F900R e la Harley-Davidson Iron 883 (angolo dichiarato 30,0°).

È un metodo un po’ pecoreccio, siamo d’accordo, ma la differenza è evidente, parliamo di circa 5-6°, non certo degli 0,5° risultanti dai dati dichiarati.

Una differenza del genere, molto pronunciata, si riflette anche nel comportamento alla guida: lo sterzo delle F900R e XR è nettamente più pronto di quello della 883.

Fin qui le prove portate a sostegno della mia affermazione — una fotografia e alcune sensazioni alla guida — non sono proprio di livello scientifico, lo ammetto. Ma ho un’arma segreta che mostra infallibilmente l’errore, e il bello è che me la fornisce la stessa BMW.

Nella cartella stampa delle nuove F900, è riportata un’interessante tabella dove sono messe a confronto le quote dell’avantreno di F800R, F900R e F900XR.

Di solito, ogni costruttore dichiara l’angolo di inclinazione di sterzo (steering head angle, in questo caso misurato rispetto all’orizzontale) e l’avancorsa (castor o trail) di ogni modello, ma in questa tabella, In via del tutto eccezionale, è presente anche l’offset (fork offset).

Come ho detto sopra, l’offset è il “trucco” che viene usato dai costruttori per armonizzare nel modo migliore angolo di sterzo e avancorsa. Le due F900 hanno lo stesso angolo, ma la F900R ha un’avancorsa sensibilmente superiore rispetto alla XR — cosa che peraltro risulta assai evidente alla guida — e BMW con questa tabella vuole appunto chiarire che questa differenza è stata ottenuta con un diverso offset.

Però, se io ho due di queste misure, la terza è univocamente determinata, non si scappa — a meno che non si ricorra a piastre di sterzo molto particolari, che consentono una diversa inclinazione degli steli della forcella rispetto all’asse dello sterzo, cosa che si riscontra solo su alcuni chopper estremi — e i dati forniti da BMW non tornano.

Facendo un po’ di calcoli — mi è toccato rispolverare un po’ di trigonometria, se avete voglia di fare altrettanto, potete dare un’occhiata qui — emerge che per abbinare l’avancorsa e l’offset dichiarati per entrambe le F900, occorrerebbe avere un angolo di sterzo di circa 24,95° (per la precisione 24,97° sulla R e 24,93° sulla XR), perfettamente coerente con i rilievi visivi e con le sensazioni alla guida di queste moto e vicino ai 26° della F800R.

Che dire? Anche i tedeschi sbagliano. 😉

Potenza e velocità

Noi motociclisti, si sa, siamo gente un po’ sborona e che chiacchiera molto, spesso per vantare competenze e capacità più o meno immaginarie. Naturalmente, tra i vari argomenti su cui accanirsi, le capacità velocistiche sono l’argomento principe, quello che sta veramente a cuore alle Femmine e ai Maschi Alfa e alle/agli aspiranti tali, cioè alla maggioranza degli esemplari di homo motociclans.

Il concetto di velocità è naturalmente collegato a quello della potenza; a parità di altre condizioni, più una moto è potente, più è veloce, e questo ha spinto e spinge schiere di motociclisti all’acquisto di moto sempre più potenti, tant’è vero che negli anni ’80 i 60 cavalli di una Yamaha RD350 erano considerati una potenza da strappare le braccia, mentre oggi si consiglia al (e alla) principiante di iniziare con una Honda Hornet da 100 cavalli, per poi passare in breve tempo ai 150 cavalli di una maxienduro o ai 200 e oltre di una supersportiva.

Immancabilmente, la prima domanda che fa un motociclista interessato a una moto è “quanti cavalli ha?” e i bar sono pieni di gente che si vanta di aver acquistato la moto più potente della categoria o comunque più potente di quella degli amici, beandosi della supposta automatica promozione a massimo velocista della comitiva. Illusi.

Il fatto è che non ha alcun senso misurare le capacità velocistiche di una moto su strada basandosi sulla velocità massima (in pista il discorso è un po’ diverso): una supersport attuale supera di slancio i 300, ma basta una qualunque 600 degli ultimi vent’anni per superare i 200, e già questa è una velocità eccessiva su strada, non solo perché è vietata, ma anche perché il traffico la rende spesso impossibile, e comunque tenerla per più di qualche minuto è una faccenda piuttosto scomoda, a causa delle turbolenze aerodinamiche.

Se si vuole scegliere una moto veloce su strada, è molto più utile ragionare in termini di accelerazione: se una moto impiega meno tempo di un’altra per arrivare, diciamo, a 100 km/h, allora posso dire che quella moto su strada – almeno nel misto, dove di solito non si riesce ad andare oltre tale velocità – è effettivamente più veloce.

E qui già sento il coro al bar che ulula: “ma una moto più potente è anche più scattante!” Sì e no. La dura verità è che una CBR1000RR da 213 CV e una CB650F da 95 CV impiegano, in mano a gente che sa guidare, pressappoco lo stesso tempo per raggiungere i 100 km/h, cioè circa 3,5 secondi. Giuro. Il fatto è che puoi metterci tutti i cavalli che vuoi, ma in pratica nessuna moto è in grado di impiegare meno di quel tempo per raggiungere quella velocità, perché se no impenna, a causa dell’interasse assai più corto che sulle automobili, rendendo necessario parzializzare il gas[1].

Certo, c’è comunque una bella differenza tra una 1000 e una 650: la prima viene sparata fuori dalle curve come con una fionda anche nelle marce alte, mentre con la seconda occorre lavorare di più con il cambio per ottenere lo stesso risultato. Senza contare che la supersportiva 1000 effettivamente diventa assai più scattante di tutte le altre moto all’aumentare della velocità, perché oltre una certa soglia queste non ce la fanno ad arrivare al limite del ribaltamento e quindi la potenza scaricata a terra dai loro motori è effettivamente l’unico loro limite all’accelerazione.

Ma quando si percorre un bel tratto di curve con il coltello fra i denti, la velocità massima che si riesce a raggiungere tra una curva e l’altra non è di molto superiore ai fatidici 100 km/h e può essere anche di parecchio inferiore se è un misto stretto.

Quindi, una potentissima 1000 supersportiva non ci rende più veloci su strada. Può avere senso per tante altre ragioni, ovviamente, quali il piacere personale e la maggior semplicità di guida, ma dal punto di vista della velocità pura diventa un’arma micidiale soltanto sulle piste e solo su quelle veloci.

Questo è uno dei motivi per cui le strade sono piene di gente a cavallo di belve da 150 o 200 CV che si fa sverniciare da gente in sella a una vecchia Ducati Multistrada 620 da 63 CV. Ogni riferimento è puramente casuale :)).


[1] Analogo di scorso è valido per la frenata, argomento trattato in un altro articolo: https://www.saferiders.it/si-ferma-prima-una-tourer-o-una-race-replica/

Perché la BMW GS ha così tanto successo?

Premessa fondamentale: io sono un Kappista. Ho avuto in tutto undici moto BMW, delle quali sette K – compresa quella attuale – e solo una GS, che ho venduto dopo pochi mesi perché la lasciavo quasi sempre in garage per prendere la mia altra moto, una K1200GT. Quindi non sono un giessista sfegatato, tutt’altro.

Però ho studiato a lungo questa moto e fatto parecchia strada su tutte le versioni dalla R1150GS in poi, perciò ne conosco bene pregi e difetti e parlo con cognizione di causa.

Incontro continuamente giessisti fieri della propria moto e non giessisti che mi tempestano di domande sull’argomento. La BMW GS è chiaramente il più grande fenomeno motociclistico degli ultimi vent’anni, e quindi è naturale che mi sia venuta voglia di indagare sulle ragioni di tale successo.

Parlo ovviamente della GS vera, della serie R, 1200 o 1250 nelle sue declinazioni standard o Adventure. Poi ci sono anche le altre, dalla nuova F850GS in giù fino alla G310GS, ma sono roba meccanicamente molto diversa e non hanno il carisma della moto più desiderata.

La GS vera vende a pacchi, più di qualsiasi altro modello, comprese le motine da sedicenni che costano un quinto, e sembra conoscere un successo sempre più inarrestabile.

Chi ce l’ha, ne è fiero, tende a non tradirla, e se lo fa, spesso poi torna indietro. Chi non ce l’ha, ci pensa e ne parla spesso, magari per criticarla:

  • costa troppo
  • è brutta
  • il cardano è duro e sbilancia la guida
  • non si sente l’avantreno.

Più spesso però si chiede se i suoi tagliandi hanno un costo abbordabile, se la sella non è troppo alta per lui (o lei) e, soprattutto, come fanno quelli che ce l’hanno ad andare così forte. Sì, perché il GS è l’Arma Totale, l’oggetto magico che trasforma qualsiasi rospo motociclistico in un Principe Azzurro.

Insomma, la GS è comunque la moto con cui tutti devono in qualche modo fare i conti ed è circondata da un’aura tutta sua particolare. Vediamo di capire insieme se quest’aura si basa su fatti reali o è solo marketing.

Un po’ di storia

Tempo fa quelli che viaggiavano seriamente in moto si dividevano nettamente in due: gli amanti del bitume e quelli del fango; i primi compravano moto stradali possibilmente carenate, gli altri i mono da cross.

Le cose cambiarono con la nascita delle enduro, genere inventato dalla Yamaha verso la fine degli anni ’70 con la XT500, moto adatte agli sterrati e al fuoristrada relativamente impegnativo, ma abbastanza pratiche e comode da poter essere usate anche per i lunghi viaggi su asfalto.

Di stradali da viaggio se ne vendevano poche, anche perché di solito erano grandi e costose, mentre le più abbordabili enduro monocilindriche ebbero grande successo negli anni 80, durante i quali comparve anche una bicilindrica, la BMW R80 G/S, la capostipite della categoria maxienduro. Al debutto parve inutilmente grande e pesante – anche se vista oggi accanto alla R1250GS Adventure, pare la sua scialuppa – però vinse varie Parigi-Dakar, creandosi una solida fama di mangiatrice di piste sahariane, e anche per questo fece breccia nel cuore degli appassionati.

Da allora è passata molta acqua sotto i ponti. BMW è stata imitata inizialmente da Honda con la sua Africa Twin e poi dalle altre case, finché le maxienduro e le crossover – due categorie quasi sovrapponibili, con la seconda pensata per un uso più specificamente stradale – negli ultimi anni hanno soppiantato le supersportive e le naked nel cuore dei motociclisti, e la GS è la regina indiscussa di questo nuovo corso.

Oggi la maggior parte dei motociclisti – anche quelli che non viaggiano – sceglie una GS o comunque un’altra maxienduro o una crossover, anche se l’unico sterrato che vedrà sarà il vialetto di un agriturismo in Toscana, tant’è vero che la molto più venduta tra le turistiche classiche, la BMW R1200/1250RT, si vende al ritmo di una ogni 14 (quattordici) GS.

Come si spiega questo risultato?

Ragioni del successo

Marketing e comunicazione

Innanzitutto, c’è un marketing coi fiocchi. BMW vende soprattutto auto e sfrutta abilmente l’ego degli acquirenti delle proprie quattro ruote, convincendoli che la GS è perfetta per l’Uomo di Successo e che è tanto sicura e facile da guidare, da poter essere acquistata come prima moto da chiunque.

La Casa dell’Elica è stata inoltre la prima in Europa a usare i finanziamenti con maxi-rata finale e questo ha consentito a molta gente (tra cui me) di portarsi a casa una moto che non avrebbe potuto comprare in contanti o con rate normali.

Altro elemento di forza è la comunicazione. Ogni singolo fotogramma pubblicitario delle GS trasuda libertà di andare ovunque. Magari chi la compra ci fa casa e ufficio e poco più, ma ha acquistato un Sogno di Libertà Assoluta e questo è ciò che davvero conta. Questa moto promette esplicitamente di non fermarsi davanti a niente, e poco importa che, all’apparire della prima campagna “Unstoppable”, le GS abbiano lasciato quasi tutti i loro proprietari a piedi per uno stupidissimo problema elettronico, il messaggio si è comunque infisso nei cuori dei motociclisti di tutto il mondo.

Design

La GS non è certo la moto più elegante del mondo, ma è solida, fatta bene e ha un’aria maschia, robusta, professionale e con pochi fronzoli. Sembra un utensile Bosch e non a caso le sue valigie ricordano quelle dei trapani. La GS trasmette competenza e promette di estendere tale dote a chi la cavalca.

Tecnica

BMW è stata la prima casa motociclistica a equipaggiare le sue moto con accessori, spesso di chiara derivazione automobilistica, per renderla più facile, comoda, sicura e appetibile, primo fra tutti l’ABS, che proposto nel lontano 1988 sulle BMW K100 – fatemelo dire con orgoglio di Kappista – divenne presto l’accessorio preferito dai clienti dell’Elica e dal 2012 equipaggia di serie tutti i modelli della Casa.

Poi sono arrivati il controllo di trazione, le manopole riscaldate, il cambio elettroassistito anche in scalata, il regolatore automatico della velocità e le altre decine di accessori disponibili a listino, grazie ai quali il prezzo di ogni singolo esemplare cresce di svariate migliaia di euro.

Ma la GS è anche un concentrato di scelte costruttive anticonformiste, che nel complesso la rendono davvero diversa nella guida da qualsiasi altra moto:

  • frenata integrale
  • motore boxer
  • trasmissione ad albero
  • sospensione posteriore Paralever
  • sospensione anteriore Telelever.

Vediamole in dettaglio.

1)      Frenata integrale

Con il sistema frenante integrale che equipaggia le BMW R e K dotate di ABS fin dai primi anni Duemila, con la leva al manubrio si azionano entrambi i freni, mentre il pedale attiva il freno posteriore. È quindi impossibile azionare il solo freno anteriore e ciò comporta una serie di vantaggi interessanti:

  • semplifica la gestione dei freni, che possono essere azionati anche per frenate al limite con un unico comando, come sulle automobili;
  • elimina l’effetto autoraddrizzante tipicamente indotto dall’uso del solo freno anteriore in curva;
  • concorre a ridurre la tendenza della moto a picchiare in frenata[1];

Tutto questo senza impedire l’uso del solo freno posteriore, utile in determinate manovre quali le inversioni a U, i tornanti e per recuperare una curva presa troppo larga.

2)      Motore Boxer

Le BMW sono da sempre riconoscibili fra tutte per le grosse testate del bicilindrico sporgenti dai fianchi, presenti solo in alcuni modelli dell’Est europeo nati come cloni dei sidecar BMW in dotazione alla Wehrmacht nazista. La produzione delle K con motori in linea iniziò nei primi anni ’80, ma ancora oggi parecchi affezionati le snobbano, considerandole sostanzialmente un errore di percorso.

Prima di elencare i pregi reali del boxer, cominciamo con lo sfatare un suo pregio immaginario, il mitico baricentro basso: sulle attuali BMW non è vero per niente.

Una volta questo tipo di motore veniva montato molto vicino al suolo e contribuiva effettivamente ad abbassare il baricentro rispetto ad altre soluzioni, ma l’aumentare della cilindrata – e quindi della larghezza già notevole di questa architettura – e la maggior possibilità di piega in curva offerta dagli pneumatici moderni hanno imposto un montaggio molto più in alto, innalzando il baricentro a livello sovrapponibile agli altri schemi motoristici.

A parte questo, il motore boxer offre alcuni vantaggi interessanti rispetto alle altre soluzioni a due cilindri – tralasciando il confronto con i mono, che vibrano troppo, e con i pluricilindrici, più pesanti.

Innanzitutto, trasmette molto meno calore, perché le testate sono relativamente lontane dal pilota e sono perfettamente esposte alla ventilazione dinamica.

Ma soprattutto, l’architettura a cilindri contrapposti è quella che garantisce la massima regolarità di rotazione, particolarmente ai bassi regimi, tradizionale punto debole dei bicilindrici. Qualsiasi bicilindrica con motore a V sotto i 3000 giri scalcia vistosamente, mentre il boxer BMW accetta tranquillamente di scendere sotto i 2000 in qualsiasi marcia anche con il gas al massimo, consentendo così al pilota di non preoccuparsi della marcia inserita: un grande vantaggio, specie per chi non è esperto della guida.

Il boxer ha anche qualche difetto. Oltre alla citata larghezza, va menzionata la coppia di rovesciamento prodotta dall’albero motore longitudinale, che all’aumentare dei giri – tipicamente sgassando in folle – tende a fare inclinare la moto da un lato. Questo problema è stato ridotto notevolmente sulle BMW dal 2004, inserendo un contralbero sotto all’albero motore, e praticamente eliminato dal 2013 con l’introduzione del nuovo motore raffreddato ad acqua, dove diverse componenti della trasmissione girano in senso inverso rispetto all’albero motore.

Tra parentesi, da Kappista faccio notare che lo stesso problema, che avrebbe dovuto affliggere anche i motori a 3 e 4 cilindri in linea della serie K, anch’essi con albero longitudinale, fu superato fin da subito brillantemente montando il volano sulla trasmissione primaria, e tutto questo nel 1983.

E a proposito di coppia di rovesciamento conseguente a una sgassata, se qualcuno vi dice che è dovuta all’albero cardanico – una delle tante chiacchiere da bar basate sul nulla, ma dure a morire – riflettete sul fatto che l’albero non ruota a moto ferma, guardate il tizio con commiserazione e passate oltre.

3)      Trasmissione ad albero

Altre moto ne sono dotate, ma tra le endurone l’albero è una rarità e si ritrova solo pochi modelli fuori produzione, quali la Moto Guzzi Stelvio, la Yamaha Super Ténéré e la Honda Crosstourer.

La trasmissione cardanica ha il grande vantaggio di eliminare la necessità di dover pulire e lubrificare la catena ogni 500-1000 km, poco grave per il motociclista medio avvezzo a tale pratica, ma una seccatura notevole per chi proviene dalle auto o dagli scooter e in generale per chi fa molta strada.

4)      Sospensione posteriore Paralever

In passato le trasmissioni ad albero imprimevano reazioni evidenti alla sospensione posteriore, estendendola in accelerazione e comprimendola in frenata. Il problema è stato risolto, guarda caso proprio da BMW, aggiungendo un braccio alla sospensione – che così diventa un quadrilatero – e un giunto cardanico tra l’albero e la coppia conica finale – prima ce n’era solo uno all’uscita del cambio.

Grazie a tali accorgimenti e a parastrappi ben fatti la trasmissione ad albero si comporta praticamente come una catena – simula perfino il tiro catena! – e non si nota minimamente alla guida, se non per la maggior silenziosità.

Chi dice il contrario, sicuramente non ha mai guidato una moto con trasmissione ad albero di questo tipo.

5)      Sospensione anteriore Telelever

Esistono altre moto con il motore boxer o con la trasmissione ad albero e la sospensione posteriore a quadrilatero, ma nessuna moto diversa da una BMW R o K ha la sospensione anteriore Telelever[2].

Come è noto, questo schema consente alla sospensione di non affondare in frenata o comunque di comprimersi in modo molto limitato. Tale effetto è ottenuto non attraverso la frenatura dell’idraulica e il conseguente peggior assorbimento delle sconnessioni in frenata – come avveniva su alcune moto giapponesi del passato – bensì mediante una particolare geometria della sospensione, che impedendo l’accorciamento dell’interasse in frenata, ostacola anziché favorire la compressione dovuta al trasferimento di carico, ma lascia libera la sospensione di assorbire le sconnessioni della strada.

Dato che la sospensione non è soggetta se non marginalmente al trasferimento di carico, è possibile adottare un ammortizzatore estremamente morbido, che assorbe le sconnessioni in modo molto efficace, a un livello irraggiungibile su una forcella normale, a meno di non renderla troppo cedevole per una guida sportiva.

I vantaggi di questo comportamento sono notevoli:

  • la ruota copia perfettamente le sconnessioni, trasmettendo sollecitazioni minime sul manubrio;
  • l’assetto della moto rimane sostanzialmente piatto in frenata, perfino strizzando la leva con forza, e questo consente:
    • di entrare pinzati con l’anteriore in curva senza il minimo problema;
    • di frenare con l’anteriore anche in modo maldestro senza ripercussioni negative, anche in curva;
    • una guida molto redditizia e mentalmente non impegnativa;
    • un confort di marcia ineguagliabile per pilota e passeggero, molto meno soggetti a scossoni e variazioni d’assetto anche nella guida sportiva;
  • la mancata riduzione dell’interasse in frenata, tipica della forcella tradizionale, aumenta notevolmente la stabilità della moto, anche nelle staccate assassine;
  • è possibile applicare in modo pressoché istantaneo la forza frenante sulla ruota anteriore, cosa di solito resa impossibile dalla necessità di attendere la completa compressione della sospensione, con drastica riduzione del rischio di bloccaggi da panic-stop (oggi comunque scongiurati dall’ABS).

I detrattori del Telelever affermano che esso impedirebbe di percepire il comportamento della ruota anteriore, particolarmente nella guida sportiva. Beh, dopo una vita di prove e comparazioni, posso serenamente affermare che questa è una fesseria. Prova ne sia il fatto che chi guida un GS tende ad andare più veloce che con altre moto, il che vuol dire che la moto gli dà più confidenza. Questa sospensione è semplicemente diversa, e come tutte le cose diverse, richiede di rivedere le proprie convinzioni, esercizio non facile per alcuni.

Conclusione

Insomma, tutte queste caratteristiche concorrono a fare della GS una moto facile da acquistare e da mantenere, comoda per viaggiare e facilissima da guidare, tanto da essere davvero a prova di errore. Capacità di guida relativamente limitate sono sufficienti per farla andare forte e con un impegno mentale particolarmente ridotto; ecco perché chi la prova, di solito se ne innamora.

Insomma, se avete una GS, quella vera, avete fatto un buon acquisto.

Se non ce l’avete, che aspettate a provarla?

[1] Nel caso della GS è più corretto usare il condizionale, perché la presenza della sospensione Telelever, di cui si parlerà più avanti, già di suo determina l’effetto descritto, tra le varie cose.

[2] Esiste uno schema diverso dagli effetti molto simili – la sospensione a quadrilatero Hossack (Duolever) – che equipaggia le BMW K più recenti (1200, 1300 e 1600) e la nuova Honda Goldwing.

Una rondella non fa primavera!

Ah già era una rondine scusate ma, che diamine, smetterà di piovere e finalmente la stagione che tutti noi motociclisti aspettiamo per mesi col naso all’insù arriverà, resistete!!

Io i sintomi primaverili ce li ho già, non si tratta proprio di quelli comuni a tutti all’arrivo della stagione. Di solito, se non si è affetti da morbo motociclistico grave come il sottoscritto, i sintomi standard sono dei classici: occhi rossi, naso congestionato per via del polline e cosi via, tutte cose che con una buona dose di antistaminici ci lascia in pace.  Io invece ne ho di più specifici, magari ci fossero delle pillole! Iniziano di solito al lunedì, quando già so che passerò i seguenti cinque giorni con una domanda fissa in mente: “Dove vado con la moto sabato?” Poi devo resistere fino al venerdì, ma cacchio, la settimana è lunga e interminabile!
Tento di sopravvivere alla routine quotidiana, fingendomi interessato ai discorsi al bar tipo quanto corre Gervinho o quanto sia gnocca o meno l’ultima entrata nella casa del Grande Fratello mentre la testa è già in giro per curve e tornanti. Il mio PC sembra una stazione meteo, confronto e controllo di continuo. Incrocio dati puramente scientifici ma nel frattempo chiamo anche zia per sentire se il famoso callo che le duole quando piove si è fatto sentire ultimamente! Poi resta la cosa più difficile: schivare, con abilità seconda solo a un diplomatico di fama internazionale, inviti vari da suocere, mamme, compleanni, battesimi e matrimoni, perché il resto del mondo sembra non capire l’equazione più facile del mondo: sabato+non lavoro+sole= esco con la moto! Mica è difficile, non trovate?

Scherzi a parte l’inverno è stato come sempre lungo e freddo. Come lo avete trascorso? Avete usato lo stesso la vostra moto? O l’avete messa a riposo in attesa della stagione buona? In entrambi i casi vediamo cosa è bene controllare prima di iniziare ad usare nuovamente con più frequenza la nostra amata due ruote.
sommerso-di-lavoroDiciamo che si può parlare di ispezioni e controlli che, mi raccomando, è bene fare da soli se si possiedono le capacità per farlo, altrimenti rivolgiamoci al nostro meccanico di fiducia. Fermo restando che si parla di mezzi che sono stati fermi per qualche mese e non di rimessa in marcia di mezzi in disuso da tempo.

Dividiamo il tutto in quattro macrocategorie: Motore, Trasmissione, Freni e Pneumatici.

 

Motore:

  • Controllare lo stato di carica della batteria. Si può fare con un tester o con dei dispositivi dedicati in vendita presso i negozi di ricambi che forniscono un’indicazione in percentuale o più semplicemente anche solo una luce verde e una rossa. In caso fosse scarica procediamo prima a ricaricarla per evitare di mandarla definitivamente a terra al primo tentativo di accensione. Se di tipo sigillato limitarsi alla ricarica, se di tipo tradizionale controllare anche che il livello dell’acido sia adeguato a coprire le piastre prima di ricaricarla. Se siete stati previdenti ed avete lasciato il vostro mezzo collegato ad un mantenitore di carica saltate pure questo controllo.A4000002
  • Controllare il livello del liquido di raffreddamento. Ispezionare il livello del liquido di raffreddamento controllando che sia nei parametri previsti dalle tacche presenti sulla vaschetta di recupero. Controllare poi il livello dell’olio motore o sostituirlo se al momento dello stop si era già vicini all’eventuale sostituzione.

DSCN0387 livello-olio-300x225

  • Pulire il filtro dell’aria.  Una bella soffiata o un lavaggio in caso abbiate installato un  filtro lavabile. Il filtro è il polmone del nostro motore e senza la giusta quantità e qualità dell’aria tutti i parametri dell’alimentazione motore si alterano.

Trasmissione:

  • Controllare lo stato della trasmissione. In caso di trasmissione a catena verificarne il corretto tensionamento e lo stato di pulizia e ingrassaggio. Se a tatto il vecchio grasso si è seccato sulla catena formando una crosticina rimuoverlo con un pulitore per catene spray dedicato alle catene con o-ring e rimuovere tutto lo sporco con uno spazzolino o straccio. A pulizia effettuata ingrassare nuovamente la catena ripetendo l’operazione di ingrassaggio al rientro dal primo utilizzo.496b37f021_6449731_med

 

Freni:

  • Controllare il livello di usura delle pasticche. Verificare che ci sia la quantità di materiale frenante adeguato per affrontare i primi utilizzi ispezionando visivamente le pasticche e in caso negativo sostituirle.  Nell’immagine si nota la differenza tra una pasticca consumata (a) e una nuova (b).Img005
  • Controllo olio impianto frenante. Un corretto funzionamento dell’impianto frenante è strettamente legato alle condizioni di questo fluido. L’olio dei freni è fortemente igroscopico, tende cioè ad accumulare umidità, che durante l’utilizzo si trasforma in vapore acqueo, restituendo una frenata meno efficace o, come si dice in termine tecnico, un po’ “spugnosa”. E’ buona norma cambiarlo dopo uno stop prolungato procedendo a sostituirlo con dell’olio nuovo proveniente da un contenitore sigillato del tipo raccomandato per la vostra moto (è scritto sul tappo del serbatoio del liquido freni, posto presso ciascuna pompa). Questa operazione può essere eseguita da soli solo se in grado di farlo, mi raccomando.

 

Pneumatici:

  • Controllare la pressione. Verificare la pressione degli pneumatici che a causa dello stop, ed anche in caso di moto sollevata sui cavalletti, potrebbe essere scesa anche di molti bar. Riportarla alla pressione adeguata (di solito compresa tra 2,2 e 2,9 bar) e comunque tenendo conto di quanto raccomandato sul libretto d’uso della vostra moto.
  • Ispezionare gli pneumatici visivamente. Controllare che sulla superficie della gomma e soprattutto sulla spalla non si siano formate screpolature o spaccature. Tali segnali vanno interpretati come un indurimento della mescola a prescindere dal chilometraggio effettuato soprattutto se la moto è stata utilizzata poco. Altra indicazione utile è leggere il DOT della gomma, un numero a quattro cifre che indica la settimana e l’anno di produzione dello pneumatico. Se la gomma risulta datata a prescindere dal reale utilizzo chilometrico, se ne consiglia ugualmente la sostituzione.2ai0u42p1010712

 

Pochi semplici, ma doverosi controlli che spettano al bravo proprietario. Ricordatevi sempre di non inquinare e di smaltire i materiali sostituti negli appositi punti di raccolta, mi raccomando.

Ora non vi resta che capire se il prossimo week end ci sarà il sole e godervi una bella giornata in compagnia dei vostri amici e delle vostre moto.

 

estate_moto01_p

 

È più veloce in curva una moto leggera o una pesante?

È convinzione universale tra noi motociclisti che le moto leggere siano più veloci in curva di quelle pesanti. È un assioma e come tale è un fatto incontestabile: è così punto e basta, senza possibilità di replica. Sostenere qualche cosa di diverso porterebbe a fischi e ululati da stadio nella comitiva, seguiti da decine di esempi che dimostrano inequivocabilmente che le moto leggere curvano come saette e girano intorno a quelle pesanti in tutte le curve e in particolare nel misto stretto.

Ma siamo proprio sicuri sicuri che le cose stiano davvero così?…

Prendiamo due moto diverse nel peso, ma identiche in tutte le altre caratteristiche: interasse, luce a terra, posizione del baricentro, geometria delle sospensioni, dimensioni dei cerchi e degli pneumatici ecc., e domandiamoci come influisce la differenza di peso in curva.

La prima domanda da farci è se tale differenza comporta, a parità di velocità di percorrenza e raggio di sterzata, una differenza nell’inclinazione della moto. Se così fosse, chiaramente ci sarebbe un vantaggio per la moto che si inclina meno, perché essa all’inclinazione massima, quella in cui gratta tutto il grattabile, andrebbe più veloce.

Ora, per qualsiasi moto, a una determinata velocità di percorrenza di una curva di dato raggio corrisponde un preciso angolo di inclinazione del sistema moto + pilota, in base alla seguente formula:

α = arctan (v²/(r ∙ g))

dove α è l’angolo cercato rispetto alla verticale, v è la velocità, r il raggio della traiettoria curva e g l’accelerazione gravitazionale.

Come si vede, il peso nella formula non c’è, quindi esso non concorre a determinare l’angolo; di conseguenza, una moto leggera e una pesante, a parità di tutte le altre caratteristiche, piegano esattamente con lo stesso angolo nel percorrere la stessa traiettoria curva alla stessa velocità.

Domandiamoci allora se il peso influisce sulla tenuta di strada. In altre parole, proviamo a capire se un peso maggiore diminuisce la capacità delle gomme di restare incollate al suolo senza derapare durante una curva.

Innanzitutto, è intuitivamente evidente che una moto più pesante oppone una maggior inerzia al cambiamento di traiettoria e quindi sviluppa una forza centrifuga maggiore.

La formula della forza centrifuga è la seguente:

Fc = (m ∙ v²)/r

dove m è la massa del sistema moto + pilota, v è la velocità e r il raggio della traiettoria curva.

Come si vede, la forza centrifuga cresce linearmente al crescere della massa. Quindi in curva gli pneumatici devono contrastare una forza tanto maggiore, quanto più il sistema moto + pilota è pesante.

Dobbiamo quindi chiederci se e come varia l’aderenza degli pneumatici all’aumentare della massa.

L’aderenza, vale a dire la forza di attrito che uno pneumatico può offrire, dipende dal coefficiente di attrito, cioè dalla capacità del battistrada di aderire al suolo in presenza di forze applicate tangenzialmente rispetto ad esso, e dal carico gravante sulla ruota, secondo la seguente formula:

Fa = Ca ∙ c

dove appunto Fa è la forza di attrito, Ca è il coefficiente d’attrito della data gomma su una data superficie e c è il carico gravante su di essa.

Come si vede dalla formula, l’aderenza dipende linearmente dal carico che grava sulla gomma, che a sua volta è funzione lineare del peso. Ne consegue che anche l’aderenza aumenta linearmente con l’aumentare del peso.

Ricapitolando, a parità di altre caratteristiche, all’aumentare del peso:

  1. l’inclinazione in curva della moto non cambia;
  2. la forza centrifuga aumenta linearmente con il peso;
  3. l’aderenza aumenta linearmente con il peso.

Perciò, dato che l’aderenza aumenta esattamente come la forza centrifuga e che quindi il rapporto tra le due resta costante al variare del peso, accade che la velocità massima con cui una data moto può percorrere una data traiettoria curva non dipende dal suo peso, a parità di altre caratteristiche.  In altre parole  una moto leggera e una pesante, a parità di altre caratteristiche, riescono a percorrere una traiettoria curva di uguale raggio alla stessa velocità.

Sorprendente, no? Eppure è così.

Ma le moto leggere vanno davvero più forte di quelle pesanti nel misto!

Sì, è vero, ma ciò dipende da tutta una serie di fattori, che vedremo in un prossimo articolo.

Si ferma prima una tourer o una race replica?

Uno dei principali argomenti nelle conversazioni da bar sulle moto è quello relativo agli spazi di frenata. Opinione comune è che una moto sportiva freni in spazi minori di quelli possibili con una tourer, grazie ai freni più potenti e al minor peso.

Ma è proprio vero? Facciamo un po’ di luce sulla questione.

Per ragionare sulla frenata di una moto occorre tenere presenti le seguenti grandezze:

  • la sua energia cinetica, cioè la quantità di energia che occorre dissipare per arrestare la moto;
  • l’aderenza degli pneumatici sull’asfalto, da cui dipende la forza frenante che si può trasmettere al suolo;
  • la potenza dei freni, che deve essere adeguata all’energia cinetica in gioco;
  • la posizione del baricentro, da cui dipende la tendenza della moto a ribaltarsi in frenata.

Energia cinetica

L’energia cinetica di un veicolo aumenta con la massa e con il quadrato della velocità, quindi al raddoppiare della massa anche l’energia cinetica raddoppia, mentre al raddoppiare della velocità essa quadruplica; ne consegue che la velocità è assai più importante della massa.

Per evidenziare la cosa, mettiamo a confronto due moto radicalmente diverse: una grossa tourer da 280 kg + 80 kg di pilota + 60 kg di passeggero + 20 kg di bagagli = 440 kg in grado di raggiungere i 240 km/h e una race replica da 200 kg + 80 kg di solo pilota = 280 kg in grado di toccare i 300 km/h.

Honda CBR 1000 RR BMW K1300GT

 

 

 

 

 

Nel caso della tourer, l’energia cinetica alla massima velocità e a pieno carico sarà pari a circa 978 KJoule, mentre per la race replica con il solo pilota saremo, alla sua velocità massima, a circa 972 Kjoule, quindi praticamente uguale, nonostante il peso nettamente inferiore.

Aderenza degli pneumatici sull’asfalto

Il primo parametro che determina l’aderenza è il coefficiente di attrito dello pneumatico con l’asfalto, cioè la forza longitudinale o trasversale che esso può sopportare prima di slittare. Esso può variare, su asfalto nuovo e asciutto, da circa 1 per una moderna gomma turistica a 1,2 circa per una gomma sportiva, per arrivare a 1,6 e oltre per una slick usata nei massimi campionati. Da ciò deriva che gli pneumatici in commercio consentono decelerazioni comprese tra 1 e 1,2 g.

Dato il proprio coefficiente d’attrito, l’aderenza offerta da uno pneumatico su una data superficie è una funzione lineare dell’ampiezza della propria impronta a terra e del carico specifico, cioè del peso gravante su di essa. Nel caso del nostro confronto, possiamo facilmente ipotizzare che le misure degli pneumatici delle nostre due moto siano le stesse (le classiche 120/70-17 e 190/55-17), e quindi che siano uguali anche le rispettive impronte a terra, a patto che la pressione sia regolata correttamente. Perciò, assumendo che entrambe le moto siano equipaggiate con pneumatici aventi lo stesso coefficiente d’attrito (anche se di solito le race replica sono equipaggiate con gomme più sportive rispetto alle tourer), abbiamo che l’aderenza disponibile dipende soltanto dal peso ed è proporzionale ad esso. In altre parole, più una moto pesa, più l’aderenza dei suoi pneumatici aumenta.

Ma come abbiamo visto più sopra, anche l’energia cinetica che gli pneumatici devono fronteggiare in frenata aumenta in proporzione al peso. Quindi, più la moto pesa e più l’aderenza e l’energia cinetica aumentano parallelamente. Da tutto ciò consegue che gli spazi di frenata di una moto non dipendono dalla sua massa, a condizione, ovviamente, che i freni siano abbastanza potenti da consentire la frenata al limite di aderenza degli pneumatici che la equipaggiano.

Potenza dei freni

Per fermare un veicolo in corsa occorre dissipare la sua energia cinetica in calore, e questo è appunto il compito dei freni.

Come abbiamo visto, l’energia cinetica massima sviluppabile da una leggera ma veloce race replica eguaglia quella massima sviluppabile di una pesante tourer a pieno carico. È chiaro quindi che i freni di una race replica, oggi in grado di imprimere facilmente alla moto una decelerazione superiore a 1 g (l’accelerazione gravitazionale terrestre) fino alle massime velocità, bastano e avanzano anche a bordo di una tourer, anche se questa pesa molto di più, e le consentono di sviluppare almeno la stessa decelerazione. E in effetti, buona parte delle moto moderne stradali – tranne quelle più economiche e dedicate ai principianti – hanno freni in grado di bloccare le ruote anche in velocità, anche se magari non sono belli e sexy come quelli di una Panigale.

Posizione del baricentro

Com’è intuitivo, se si frena molto e gli pneumatici hanno abbastanza grip, la moto può sollevare la ruota posteriore (stoppie) e, insistendo sui freni, ribaltarsi in avanti.

Questa tendenza al ribaltamento non dipende dal peso, ma dalla posizione del baricentro, ed è tanto maggiore, quanto più il baricentro è alto e avanzato.

Ora, assumiamo che una moto abbia il baricentro posto a 70 cm di altezza e 70 cm dietro la verticale del punto di contatto della ruota anteriore col suolo; in base ad un semplice calcolo geometrico, risulta evidente che tale moto inizierà a ribaltarsi quando la decelerazione impressa dai freni supererà 1g.

schema forzeCome abbiamo visto sopra, tutte le moto moderne di un certo livello sono equipaggiate con freni e possono essere facilmente dotate di pneumatici in grado di raggiungere e anche superare agevolmente tale decelerazione. Ne consegue che su alcune moto il limite geometrico di ribaltamento potrebbe essere l’elemento debole della catena, il parametro da cui di fatto dipendono gli spazi di frenata su tali modelli.

Di solito, sulle tourer il baricentro è piuttosto basso, perché ciò aiuta a gestire il peso della moto da fermo e la rende più maneggevole nel misto, e tende ad essere anche piuttosto lontano dalla ruota anteriore, anche perché l’interasse è piuttosto lungo. Il limite di ribaltamento di tali moto tende quindi ad essere molto lontano, tanto che di solito è più facile raggiungere il limite di aderenza e far bloccare la ruota anteriore, che provocarne il ribaltamento.

Al contrario, sulle supersportive il baricentro si trova normalmente più in alto, perché ciò aumenta la velocità di percorrenza in curva a parità di angolo di piega – vediamo se arrivate da soli a capire il perché! – ed è anche tendenzialmente avanzato, per ridurre la tendenza all’impennata e aumentare la direzionalità dello sterzo. Su tali moto quindi la regola è che, frenando correttamente su asfalto asciutto e in buono stato, si raggiunge prima lo stoppie che il bloccaggio delle ruote.

Per tali ragioni, una tourer ben gommata riesce a frenare senza ribaltarsi in spazi almeno pari e spesso anche inferiori a quello possibili con una moto pistaiola. Con buona pace degli amici del bar.